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a b s t r a c t

The biochar is a solid carbon-rich, porous material produced by the thermochemical conversion of a
diverse range of biomass feedstocks under an inert atmosphere (i.e., in the absence of oxygen). We can
produce the biochar at all likely scales, ranging from the industrial to the domestic level and even at
individual farms, thus, the biochar industry is leading as a most appropriate at different socioeconomic
settings. The possibility of sustainable biochar production practices and multi-functionality features
make it a promising candidate to fulfill an increasing demand in the fields of soil amendment, agricul-
tural sustainability, environmental protection, cutting-edge materials, and to achieve circular bio-
economy and mitigation of climate change. An available fraction of waste biomass (agroforestry waste,
biomass crops, agricultural residues, mill residues, and animal manure, and many more) can be used
efficiently in pyrolysis and converted into desired biochar materials, besides this alternative energy
products, such as syngas, bio-oil, electricity generation, and process heat. This report emphasizes the fate
of biomass composition, pyrolysis mechanisms, and applications of modern analytical and character-
ization techniques that are being adopted, applied, and standardized to improve understandings of
molecular, structural, and surface properties characteristics of biochar. To achieve precisely designed
biochar, there is a need to understand the latest advances in biochar materialization mechanisms and
structure-application relationships to speed up their agronomic applications and to achieve a zero-waste
dream. This report also summarizes a wide range of literature published on feedstocks, pyrolysis, and
biochar and suggests several practical recommendations appropriate to implement and bring together
specific details on the thermochemical conversion of biomass, desired biochar properties, organic and
inorganic phases, and the significance to the agronomic applications.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the critical environmental concerns facing the global
community at present is the dumping of pollutants and global
warming (Flandroy et al., 2018). Climate change and the energy
crisis are the big environmental problems that causing great
concern across the world (Jacobson, 2009). Many research groups
and government policymakers determined to find eco-friendly,
simple, and cost-effective solutions addressing environmental
concerns. There is an increasing need to find out environment-
friendly and economically workable renewable energy sources
that will support the achievement of sustainable development
goals and build a better and more sustainable future blueprint for
all (Owusu and Asumadu-Sarkodie, 2016).

An inefficient biomass resource management resulting in sub-
stantial economic losses owing to the wastage of a sizeable amount
of biomass, natural resources (Fu and Jiang, 2019), and municipal
waste (Tian et al., 2012), as a result, most of them being preferred to
either dump out or incinerate (Chen, J. et al., 2017). Thus, emissions
and infiltrations are the significant aspects causing environmental
pollution and speeding up global warming (Tripathi et al., 2019).
The incineration of biomass also results in severe air pollution
(Beydoun and Klankermayer, 2020), increases the possibility of
dispersing pollutants into the environment (Ahmed and Hameed,
2020). A large area required to construct most of the waste
biomass landfill sites (Johnston et al., 2019), which leads to po-
tential pollution risk (Brand et al., 2018) and severe groundwater
contamination with a diverse range of pollutants (micropollutants
(Umar, 2016), volatile organic compounds (Randazzo et al., 2020),
heavy metals (Jambeck et al., 2008), methane gas (Singh et al.,
2018), ammonium ions (Yi et al., 2021), nitrates (Liu, H. et al.,
2019), and many more). Therefore, myriads of environmental and
health risks are linked to the residents living in close proximity to
landfill sites (Njoku et al., 2019). Therefore, thorough management
of most of the accessible feedstocks and their types worldwide is
recommended (Zhao et al., 2019), their systematic conversion into
one or the other, compost (Mihai and Ingrao, 2018), engineered
biochar (Kazemi Shariat Panahi et al., 2020), biogas (Pawar et al.,
2020), and/or bio oil (Mohan et al., 2006), pyrolysis technologies
are prevalent to prevent resulting secondary pollution and ensure
establishing circular bioeconomy (Yaashikaa et al., 2020).
Economically viable technologies and environmentally sustainable
alternatives must be employed to perform industrial-scale
2

pyrolysis and production of biochar, thus ease to success in the
commercialization of biochar-based products and potential appli-
cations (Many�a, 2012).

Presently, various types of biochemical processes and agro-
chemical processes are being accustomed to exploiting conversion
of lignocellulosic waste into value-added products, such as micro-
bial delignification combined with pretreatments and hydrolysis
(Tsegaye et al., 2019) to enhance biofuel production includes
ethanol (Zabed et al., 2016), methanol (Eichler et al., 2015), butanol
(Li, J. et al., 2019), methane (Xu et al., 2019), biodiesel (Yousuf,
2012), fuel briquettes (Sette et al., 2018), and hydrogen produc-
tion (Zhang et al., 2018). However, microbe-mediated conversion of
lignocellulosic biomass involves controlling a series of complex
metabolic pathways, such as acidogenesis, methanogenesis, ace-
togenesis, and hydrolysis (Putro et al., 2016). Most of those are
exciting but, at the same time challenging to operate at a large-scale
and while practicing green chemistry principles, since they require
experts, and also are time and energy-intensive (Schievano et al.,
2019).

Organic materials of biomass feedstocks are clean and renew-
able energy source that can be made available from various frag-
ments including, agricultural residues, forest biomass, algae
biomass, organic fraction of sludge, cardboard waste, paper pulp
waste, slaughterhouse waste, food waste, municipal solid waste,
and some other organic waste (Carpenter et al., 2014). The quantity
of biomass available globally anticipated to increase constantly;
thus, pyrolysis of waste biomass has huge potential to produce
biochar or charcoal-based products and supplement renewable
energy sources (Zhai et al., 2015). However, establishing an efficient
economically viable thermochemical conversion facility is still a
challenging task because of the inconsistency over availability of
biomass, uncertainty over profits, and strict regulations from poli-
cymakers (Tanger et al., 2013).

As a renewable alternatives, biomass-based biorefineries
(Kumar and Verma, 2021), and modern thermochemical technol-
ogies to convert biomass feedstocks into biochar or biofuels can be
a sustainable route if it is made simple and efficient to perform
worldwide (Mathimani et al., 2019). Biomass pyrolysis (Fahmy
et al., 2020), waste valorization (Nayak and Bhushan, 2019),
biomass cogeneration (Sipil€a, 2016), hydrothermal carbonization
(Kwon et al., 2012), hydrothermal liquefaction (Gollakota et al.,
2018), torrefaction rotary kilns and kiln reactors (Mei et al., 2015),
and catalytic gasification (Mandal et al., 2019) are the leading
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thermochemical technologies for biomass conversion into biochar,
biogas, and bio-oil (Rago et al., 2018). Precise control over the
heating in the pyrolysis process is the key factor to produce good-
quality biochar (Jiang et al., 2019), and this method has several
benefits besides low energy consumption (it uses about 10% of the
energy used by other energy-intensive conventional methods)
(Uzakov et al., 2018). Furthermore, the emissions of harmful gases
in biomass pyrolysis are relatively low, and the scale-up plants are
more simple, convenient, and portable, which allows them tomove
from one site to another, unlike incineration plants adopted by
most of the urban municipal plants (Czajczy�nska et al., 2017).

Biochar is a stable porous carbon-rich material formed by the
pyrolysis of biomass feedstocks with a slow heating rate and at a
relatively low temperature (400e700 �C) (Tomczyk et al., 2020).
The International Biochar Initiative (IBI) defined biochar as the solid
stable form of carbon material resulting from the thermochemical
transformation of biomass feedstocks in the absence of oxygen
(Pourhashem et al., 2019). As illustrated in Fig. 1, it is important to
integrate biochar production, functionalization, and the develop-
ment of potential applications in various sectors. There is a need to
differentiate biochar from the activated carbon and charcoal (Liang
et al., 2019), charcoal is also a carbon-rich solid material tradi-
tionally derived from biomass feedstocks (Hagemann et al., 2018),
but we normally use it for cooking-heating or as an alternative
reducing agent in the metallurgical process (Wiinikka et al., 2018).
Alternatively, popular type carbon-rich solid material called acti-
vated carbon typically derived from various biomass feedstocks
Fig. 1. Biochar as a potential material for the production of different funct

3

(Ahmed et al., 2019) and also from various types of carbonaceous
materials, including lignite, coal, and tar pitch (Saleem et al., 2019).
In this process, carbonaceous materials are “activated” by addi-
tional treatment processes that significantly improve the surface
chemistry, and increase surface area and porosity, facilitating them
to use in preparing multifunctional carbon materials (Yan et al.,
2019). Its high adsorption properties (Saha and Grappe, 2017),
makes it effective for air purification (Gwenzi et al., 2021) and
remediating contaminants from soil and water (Zheng et al., 2020),
which is why activated carbon specially intended for water purifi-
cation and potential environmental protection applications. Py-
rolysis of biomass feedstocks is a “carbon-negative” energy
strategy, warrants profound research and development (R&D) ac-
tivities globally (Lu et al., 2019) in the field of climate mitigation
(Gurwick et al., 2013), environmental pollution control (Wang and
Wang, 2019), and renewable energy alternatives (Kim et al., 2019);
footstep towards sustainable agriculture, food security, and prog-
ress of human civilization (Marmiroli et al., 2018).

This report aims to describe recent developments in biochar
production and characterization inorganic content, and the rela-
tionship between the resulting desirable properties and the
biomass composition (Li, S. et al., 2019). Various factors and oper-
ational settings (e.g., type of carbonization process, temperature,
time, type of feedstock, and so on) can influence biochar production
(Uroi�c �Stefanko and Leszczynska, 2020). Depending on the tem-
perature conditions, the pyrolysis process gets categorized into
three main types: fast pyrolysis (over a short time, fast heating rate,
ionalized products and their potential applications in various sectors.
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temperature >500 �C), slow pyrolysis (over a long time, slow
heating rate, temperature <300 �C), and moderate pyrolysis
(average time, moderate heating rate, temperature 300e500 �C)
(Zhao et al., 2018). A recent study showed that during biomass
waste pyrolysis, the primary step is cracking, and the second step
wherein the decomposition of biomass components occurs
together with the formation of oxygen-rich functional groups at
about 400e500 �C (Wang, Q. et al., 2020). The pyrolysis tempera-
ture mainly influences the molecular structure (Singh, S. et al.,
2020) and physicochemical properties of biochar materials, such
as surface area, functional groups, pore structure, and elemental
composition (Tag et al., 2016). The influence on such properties has
to be tuned precisely by the pyrolysis temperature, and it can also
attribute to the release of volatile organic compounds, particularly
at high-temperature settings (Sun et al., 2014). Several other re-
ports have also confirmed that pyrolysis at high temperatures leads
to an increased surface area (Zhang et al., 2015a), higher pH (Peiris
et al., 2019), and lower N% content but higher C% content (Zhang
et al., 2017). Thus, the precise selection of the appropriate pyroly-
sis temperature is a tradeoff between the chemical and surface
properties, normally, 500e800 �C is thought to be the optimal
range for the operating pyrolysis temperature to produce desired
biochar materials (Wang, Y. et al., 2013).

In the last decade, it has reflected rapid progress in the scientific
literature and patents covering both the production of biochar-
based functional materials, comprehensive characterization, and
discovery of potential applications (Liu et al., 2015). However, the
results from many studies suggest that R&D activities on biochar
production and its molecular and structural characteristics are
currently under serious investigation (Kazemi Shariat Panahi et al.,
2020). Developments of functional materials based on biochar is
emerging as a sustainable platform of carbon materials (Liu et al.,
2015), while speed up biochar production, feasible technologies,
and climate change-related practical achievements (Xiao et al.,
2018). Thus, worldwide efforts have to be implemented on pro-
ducing biochar at a different scale, pyrolysis for biochar (Many�a,
2012), production and utilization (Cha et al., 2016), multifunc-
tional biochar-based products (Liu et al., 2015),
agroecosystemesustainability (Nair et al., 2051), soil-water reme-
diation (Guo et al., 2020), and emerging applications (Liu, W.-J.
et al., 2019), and collective efforts in biochar research (Wu, P.
et al., 2019). However, most of these reviews have stressed
certain aspects related to biochar materials, biochar production,
and their specific applications. There is also a need for new reports
aiming at critical and comprehensive review of biochar's materi-
alization mechanisms, its molecular and structural characteriza-
tion, and functionalization for emerging applications.

More specifically, critical assessment of the sustainability over
availability of biomass feedstocks, which plays a key role in
achieving sustainable biochar production and agronomic applica-
tions of biochar-based materials, would be useful. We see this as an
opportunity to articulate recent developments systematically, cur-
rent challenges, and future perspectives on pyrolysis of biomass to
biochar and some alternative products. There is a thoughtful need
to evaluate the fate of biomass components, biochar formation
mechanisms, physicochemical characteristics, and their miscella-
neous applications in the agronomic field, and related fields. In this
report, we thus attempt to cover the biochar formation mechanism
in relation to biomass components, and pyrolysis temperature,
potential characterization techniques, molecular aspects behind
tuning surface functionality, and some sustainability insights.
4

2. Biochar production

2.1. Choice of feedstocks

To achieve multiple biochar production goals, including fine-
tuning of properties, improving economic aspects, reducing envi-
ronmental emissions, and increasing co-products in biochar pro-
duction (Czajczy�nska et al., 2017), significant feedstock resource
supply factors must be considered carefully, such as feedstock type,
collection, comminution (size reduction), storage facilities, auto-
mation in handling/feeding, and analysis of its composition (Stone
et al., 2010). The uncertainty over the cost and availability of
biomass feedstocks varies significantly across the world (Speirs
et al., 2015). Thus, the blending, pelleting, comminution, cost-
effective transport, and formulation of various available feed-
stocks, combined with chemical pretreatment (Carpenter et al.,
2014) and thermochemical procedures, would facilitate a reliable,
lower-cost, and high-volume biomass supply for the emerging
biochar industry (Yazan et al., 2016). However, there are several
other critical factors involved in achieving sustainability in the
pyrolysis process (Homagain et al., 2016). Accordingly, the biomass
feedstock choice and pretreatment methods used do affect biochar
yield and quality (Gai et al., 2014a), and the potential implications
of the pyrolysis environment are yet to be fully understood. This
review describes the broad literature currently available to the
author's knowledge regarding the choice of feedstocks and the ef-
fect of pretreatments on the yield, product improvement, and dis-
tribution of inorganic elements in biochar materials.

As shown in the graphical abstract, when the conversion of
biomass into biochar has to be executed sustainably globally, it has
enormous potential to achieve climate change mitigation (Woolf
et al., 2010), environmental protection (Kazemi Shariat Panahi
et al., 2020), and soil amendment (Woolf et al., 2010). Biochar is a
viable alternative to manage solid waste and it can be produced
sustainably from the various biomass feedstock materials acces-
sible (Gezae and Chandraratne, 2018), agricultural residues
(Colantoni et al., 2016), agro-industrial waste (Dahal et al., 2018),
hard-wood forestry biomass (Lu and El Hanandeh, 2019), food
waste (Elkhalifa et al., 2019), and livestock manure (Gunamantha
and Widana, 2018). To be precise, a wide range of feedstock re-
sources have to be undertaken predominantly (Hassan et al., 2020).
These include agricultural lignocellulosic biomass residues (sugar-
cane bagasse (Raul et al., 2021), banana peduncle (Karim et al.,
2015), corn stover (Zhu, L. et al., 2015), wheat straw (Junna et al.,
2014), rice straw (Li, J. et al., 2018)), forest residues (thinning
(Puettmann et al., 2020) and logging residues (Campbell, J.L. et al.,
2018)), aquatic biomass (Mokrzycki et al., 2020), cardboard waste
(Ghorbel et al., 2015), paper waste (paper mill sludge (Yoon et al.,
2017), paper mill waste (Van Zwieten et al., 2010), municipal
solid waste (Jayawardhana et al., 2016), wastewater organic sludge
(Bolognesi et al., 2019), and dedicated energy crops (Blanco-Canqui,
2016) (switchgrass (Koide et al., 2018), high biomass sorghum
(Kotaiah Naik et al., 2017), hybrid poplars. The utilization of woody
biomass to manufacture value-added products, particularly using
residual biomass harvesting andwood thermochemical conversion,
increases the feasibility of biomass processing and reduces the
vulnerability of tragic wildfires and incidences of disease and in-
sects in forests (Luo et al., 2016). Feedstocks, particularly from in-
dustrial or landfill waste, sewage sludge, and biomass from
phytoremediation, must be examined before being used for biochar
production and must not contain elevated levels of heavy metals
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because they end up in the final product (Zhao et al., 2019). A sig-
nificant consequence of biochar R&D activities has raised serious
attention among scientists, production industries, and farmer
communities. The potential negative impacts of increasing
competition for agricultural land include rising food prices, threats
to biodiversity, and greenhouse gas emissions (Tisserant and
Cherubini, 2019). Fixing socioeconomic and socioecological fac-
tors can be a potential framework to address land-related limita-
tions and examine the roles of policymakers in accelerating
biomass conversion movement, sustainable biochar production,
and expected carbon sequestration.

It is important to consider all possible channels of feedstock
supply with a sustainability approach from local communities and
local businesses prior to the establishment of a biochar production
unit (Homagain et al., 2016). To ensure this, there is need into put
serious efforts on featuring the significance of sustainable aspects.
Thus, there is a need to use a stringent set of standards to consume
most of the available biomass feedstocks in pyrolysis. Biomass
availability in the immediate area also affects the feedstock choice
and is of primary significance in terms of conversion of the land site
to generate feedstocks at a reasonable price (Torres et al., 2011). In
developing countries, biomass is often consumed as a cooking and
heating fuel; however, nursery production worldwide with
ecosystem conservation is a potential alternative with added sus-
tainability (Overend, 2017).

Biomass-crop production, residual feedstock, such as cropping
residues (Li, Z. et al., 2019), municipal sludge (Sun et al., 2017), and
agro-industrial byproduct bagasse (Vimal et al., 2019) are sustain-
able sources of feedstocks available globally to achieve next-level
production of biochar. Cattle manure and chicken litter are tradi-
tionally used as a direct bio-fertilizer in organic farming practices
(Sikder and Joardar, 2019), but in some sites, they also considered
waste, and their disposal is a costly and challenging task (Dr�o _zd _z
et al., 2020). However, there are tradeoffs, and there is the possi-
bility of nutrient value loss from the use of such feedstocks (Woolf
et al., 2019) in the production of biochar (Jeffery et al., 2015). An
important step is that the particular feedstock must be adequately
dehydrated prior to the pyrolysis, and we can acquire alternative
energy needed for dehydration can be acquired from the pyrolysis
process itself of the previous batch of feedstock (Kim and Kang,
2012). Depending on the feedstock choice, the dehydration pro-
cess, and careful storage, a series of interventions that include labor,
energy utilizers, and dehydrators are necessary (Whittaker and
Shield, 2017). Mill and forest residues are potential sources of
biomass feedstocks applicable in the production of biofuels, bio-
energy, and solid biochar (Simangunsong et al., 2017). However,
most of the time, these biomass materials are considered waste and
left on the site to decompose or pile burned to avoid wildfire risk
(Corona et al., 2015). The transportation cost of such biomass
feedstocks is very high, when the feedstock is located far from the
processing unit (Searcy et al., 2007), the densification of the feed-
stock biomass by pelletizing or chipping is a sensible approach
(Thornley et al., 2015). Thus, some alternative practices can be
sustainable and economically feasible in terms of resourcing
biomass feedstocks; includes installing preprocessing onsite units
to increase portability and generate high-density biomass
(Homagain et al., 2016).

Renewable fuels from biomass feedstocks have the potential in
reducing CO2 emissions and transform the current fuel supply
scenario globally. Lignocellulosic biomass, the most widely
researched and used materials, is mostly being favored in ther-
mochemical processing because of its high-quality biochar, and
bio-oil with low ash-content produced. However, the ease of use
and price of biomass feedstocks (e.g., agricultural residues, forest
residues, energy crops) vary significantly by area, and these are key
5

factors in approximating the economic viability of a pyrolysis
process (Dhyani and Bhaskar, 2018). A comprehensive techno-
economic examination of various thermochemical conversion
paths has to be conducted for all possible biomass feedstocks to
investigate the effects of overall cost and other variable factors in
terms of financial performance (Carrasco et al., 2017). The ther-
mochemical conversion of wood biomass to energy alternatives can
be more economically viable if value-added byproducts used in the
production of biochar-based materials (Campbell, R.M. et al., 2018).
Furthermore, blending or formulation of different feedstocks,
combined with chemical and/or thermal pretreatments prior to
pyrolysis, would facilitate steady, low-cost, high-volume biomass
supplies to develop a sustainable biofuel and biochar industry.
However, the influence of biomass choice and pretreatment
methods on biochar and other product properties, and yield, and
the pyrolysis process effects, are yet to be fully understood. This
review further summarizes the literature on the current state of
understanding regarding the influence of feedstock and pretreat-
ment choice on the quality, product yield, organic/inorganic phases,
and structureeapplication relationship of biochar.

2.2. Production of biochar

According to reports on historical forest sites at the Amazon
basin (Chen, W. et al., 2019) and other literature reports, the
traditional production of biochar by pyrolysis of biomass dates back
to several thousands of years (De Gisi et al., 2014). However, pre-
treatment methods for biomass are emerged recently (Roberts and
de Nys, 2016) and pyrolysis at a slow rate (termed slow pyrolysis)
are advantageous and most often recommended for producing
biochar products with desired properties (Ronsse et al., 2013).
Therefore, this report emphasizes the significance of pretreatment
procedures before the pyrolysis of biomass; for instance, biomass
alkali treatments (e.g., potassium hydroxide) help to “soften” the
biomass tissues through the breakdown of lignocellulosic com-
pounds (Veksha et al., 2014). It also suggests pretreatment of
biomass with chemicals like phosphoric acid to reduce the pH and
to increase the functional groups involves in the slow-release of
phosphate fertilizer (Yao, C. et al., 2015). Other methods of biomass
pretreatment are also effective, such as varying the base and acid
content using mixed clay, salts, or minerals (e.g., rock phosphate),
which helps to reduce the rate of pyrolysis and increase the
quantity of nutrient-rich inorganic particulate matter in the porous
structures and on the biochar surfaces (Joseph et al., 2018).
Furthermore, such pretreatments can be used to increase yields of
liquid products, gas as well as biochar (Wang et al., 2015). One of
the report revealed the effects of freeze-drying and silver staining
on the cellulose fibers to enhance the yield of the carbon nanofibers
while keeping their original structures intact (Kim and Im, 2012).
The review of Putro et al. has discussed various aspects of the
chemical and physical pretreatment and thermochemical conver-
sion of lignocellulosic materials to improve the production of
valuable biochar, chemicals, and biofuels (Putro et al., 2016).

Dry torrefaction has recently received extensive attention; this
process needs an external heat input to speed up the dehydration of
biomass and breakdown of molecular bonds simultaneously
(Gronnow et al., 2013). Acetic acid, methanol, and other volatile,
oxygenated, and organic compounds are expected to be released
during this pretreatment (Carpenter et al., 2014), along with the
emission of CO2 and CO owing to the breakdown of the molecular
bonds present in hemicellulose and cellulose materials (Pahla et al.,
2017). Torrefied biomass is more brittle than that of fresh biomass,
thus making the powder of the resultant biochar is much easier and
less energy-intensive downstream processing (Chen, 2015). It is
often recommended to use dry torrefaction treatment to biomass
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before the production of biochar to improve surface properties,
water uptake, stability against biological degradation, and long-
term storage of biochar products (Restuccia et al., 2019).

Whereas, wet torrefaction is one of the important and emerging
pretreatment processes typically recommended to convert light-
weight biomass to energy-dense solid fuel using a uniform biomass
method. The fuel value of such solid biomass produced is much
higher than that of the pristine biomass. In the procedure, pristine
biomass is treated with boiling water to compress at the temper-
ature of 200e260 �C (Yan et al., 2010), as reported mass and energy
balances of wet torrefaction of lignocellulosic biomass (Yan et al.,
2010). However, few of them addressed the aspects to estimate
precise energy andmass balance involved. In particular, energy and
mass balance are the most significant factor to ensure precise
optimization and an economically feasible design (Tzanetis et al.,
2017). A comprehensive assessment was reported on wet torre-
faction covering two types of biomass fuels as feedstock softwood
and hardwood, wherein they examined the effects of parameters
such as temperature, pressure, holding time, reaction settings, and
feedstock size on the properties and yield of the solid biochar
products (Bach et al., 2013). Furthermore, there is a need for further
investigations to establish precise energy and mass balance that
would aid in energy production, estimate its commercial feasibility,
and facilitate technical and economic analysis of the emergent
biomass torrefaction technologies (Mamvura and Danha, 2020).

The properties of biochar differ according to the pyrolysis
temperature, as shown in Scheme 1. As the pyrolysis temperature
increases (200e700 �C), the biomass color turns from brown to
black, and the biochar yield varies typically from 15 to 40% and
polarity values get decrease (Tomczyk et al., 2020). The hydrogen
content (H%) ranges from 1.4 to 6.1%, and the oxygen content (O%)
ranges from 11 to 41% for biochar derived from pine needles (Chen
et al., 2008). The fixed carbon content (C%) for this biochar typically
ranges from 50 to 85%, and the ash percentage varies from 13 to 49%
for biochar derived from rice straw (Xiao et al., 2014). The aroma-
ticity, pH, zeta potential (z), and surface area for biochar derived
Scheme 1. Variation in biochar properties with an increase in pyrolysis temperature
conditions.
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from pine needle biomass increases with an increase in pyrolysis
temperature from 200 to 700 �C (Chen et al., 2008).

The biomass undergoes the pyrolysis process in the absence of
O2 at a temperature above 300 �C, causing the organic components
to decompose thermally and release the vapor phase, finally
forming residual solid-phase biochar materials (Mohan et al.,
2006). When cooled down, the vapor phase produces bio-oil,
wherein the mixture of polar and high-molecular-weight organic
compounds gets condensed, while the low-molecular-weight vol-
atile compounds (CO, C2H2, CH4, and H2) remain as gas-phase (Chua
et al., 2019; Laird et al., 2009). The liquid condensate of pyrolysis is
called wood vinegar or smoke water, depending on the tempera-
ture conditions and the concentration during production (Lu et al.,
2019). We can use wood vinegar as a plant growth promoter, bio-
fungicide, seed germination aid, and composting stimulator; it
can also be used to improve the characteristics of biochar (Fagern€as
et al., 2015).

As shown in Table 1, we can categorize the pyrolysis processes
into three main types (i.e., flash, fast, and slow pyrolysis) based on
the reaction duration, heating rate, and main product yield (Onay
and Kockar, 2003). Fast pyrolysis technology has received global
attention as a potential platform for the production of sustainable
drop-in biofuels, biogas, and several chemicals as well as some
important commercial products (Bridgwater, 2012). A previous
review report byMohan et al. was dedicated onwood pyrolysis and
detailed characteristics of the bio-oils as a main product of fast
pyrolysis (Mohan et al., 2006). We usually prefer low energy den-
sity biomass for the production of biofuels by fast pyrolysis reactor
systems. This process is frequently considered as a thermal
decomposition route (heating value ~10e11MJ kg�1) at a medium
temperature range (400e600 �C) in the absence of oxygen with a
higher heating rate (>200e300 �C/min) and shorter vapor resi-
dence time (VRT) (0.5e10 s) (Czernik and Bridgwater, 2004). In the
fast pyrolysis process, a fast heating rate with high temperatures
and short VRTs are advantageous for higher bio-oil yield (Garcia-
Nunez et al., 2017). Fast pyrolysis method can yield high-energy-
density fuels (heating value about ~15e17MJ kg�1), however, syn-
gas with a relatively low-energy-density (heating value ~
5e6MJ kg�1), and a minor yield of solid biochar materials (heating
value about ~15e18MJ kg�1) (Bergvall et al., 2020).

To make biochar the major product, a carbonization process
called slow pyrolysis is recommended for almost all sorts of
biomass feedstocks (Cong et al., 2018). It involves a broad range of
temperatures from 300 to 800 �C with a slow heating rate from 5 to
7 �C/min and with a longer VRT (normally> 1 h) (Higashikawa
et al., 2016). In the slow pyrolysis process, a slow heating rate
with low temperatures and long VRTs are appropriate for the for-
mation of stable carbonaceous solid biochar materials (Hodgson
et al., 2016). In this process, the yield of other pyrolysis products,
bio-oil, and biogas is dependent on parameters, including tem-
perature, VRT, and heating rate (Mahinpey et al., 2009). The third
process called flash pyrolysis is for feedstock with a very small
Table 1
Yields and characteristics of biochar are prepared with four different pyrolysis
methods.

Slow Flash Fast Gasification

Temperature (K) 300e800 400e1000 400e600 750e1000
Heating rate (K/min) 5e7 ~1000 300e800 ~1000
VRT >60min 2e3 s 1e10 s 10e20 s
Major Products Biochar Fuel gas Fuel oil Fuel gas
Biochar yield (wt %) 30e55 11e22 16e37 14e25

aThe tabular data were collected and amended from different references (Babu,
2008; Bridgwater, 2012; Liu et al., 2015; Liu, W.-J. et al., 2017).
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particle size (e.g., <0.5mm) (Urban et al., 2017), which reaches high
reaction temperatures (600e1200 �C) within 2 s, owing to the high
heating rate and temperature (Di Blasi, 1996), yields biogas as the
main product (Song and Watkinson, 2004).

Some other thermochemical conversion platforms like lique-
faction are gasification are useful besides pyrolysis to convert pre-
treated biomass into fuels. Biogas produced from gasification
technologies is currently standing at third position after ethanol,
suggesting syngas could be a potential alternative to gasoline fuels
(Colmenares et al., 2016). Since nonrenewable gasoline rates are
anticipated to surge, renewable alternative fuel sources, such as
conventional or cutting-edge biodiesel technologies, do not appear
to be economically cost-effective (Misra et al., 2016). The gasifica-
tion of biomass seems to be a versatile and exciting technology to
process various biomass resources (energy crops, agricultural res-
idues, urban waste, industrial and food processing waste), after
adaptation of traditional coal gasification equipment's developed in
the course of the industrial revolution (Couto et al., 2013). However,
the high density of oxygen-functionalized organic compounds
present in various types of biomass poses a major challenge to
improve the conversion of biomass into fuel (Mohan et al., 2006).
The gasification of biomass yields syngas, which can be also con-
verted into liquid hydrocarbon, high-density fuel, by using the
FischereTropsch method and other oxochemical reactions in con-
version procedures (Klimkiewicz, 2014). Thus, gasification tech-
nologies have potential to get rid of quality control issues; in
addition, it offers incredible plasticity to employ syngas for
different other purposes. Therefore, the production of syngas from
the gasification of biomass is now emerging as the most favorable
technique to exploit renewable fuel sources (Sikarwar et al., 2017).

The gasification of biomass is normally achieved in the tem-
perature range from 750 to 1000 �C (Basu, 2018) and the pressure
range from 1� 105e3� 105 Pa with or without catalytic agents
(Liakakou et al., 2019). Recent reports covered techno-economic
comparison (Anex et al., 2010), catalytic reactions occurs during
the biomass gasification (Hashaikeh et al., 2006), dual fluidized bed
systems for biomass gasification (Hanchate et al., 2021), low-
temperature gasification technology (Hayashi et al., 2014). Ad-
vances in biomass gasification can be achieved by range of reactor
structure designs (Sikarwar et al., 2016), shapes (Schulzke, 2019),
and configurations (Erakhrumen, 2012) embraced for fixed bed
with downdraft or updraft (Alarc�on-Gaete and Elicer-Cort�es, 2016),
circulating fluidized beds (Grace and Lim, 2013), and gasifier with
dual fluidized bed (Kern et al., 2013), and most of them are
appropriate to employ in commercial scale operations. These
technologies allow more precise control over temperature, pres-
sure, ash removal, and suitable to ease scale-up practices. However,
to make biomass gasification a more profitable technology, adapt-
ability and pretreatments are essential to introduce a wide variety
of lignocellulosic-rich biomass (Yousuf et al., 2020). In the same
vein, the production of high value-added products, chemicals, and
high-quality biofuels for power and heat generation, whenever
required as those markets are promising with profitable prospects.

Furthermore, this review emphasized on the slow pyrolysis. This
process involves an exothermic reaction; thus, the released energy
is attributed to the breakdown of biopolymers present in the
biomass (Blasi et al., 2019). During this process, the oxygen within
the biomass materials gets released, which in turn influences the
energy-releasing oxidation processes besides the yield of both
biochar and biogas (Bacskai et al., 2019). The released energy cre-
ates sufficient heat to breakdown the remaining chemical bonds
present in the biomass (Gumisiriza et al., 2017). We thus consider
this process as a self-sustaining, and it continues on its own to a
temperature of approximately 400 �C, eventually resulting in stable
carbon-enriched biochar in the oxygen-deficient environment
7

(Crombie and Ma�sek, 2014). We can establish such a setting to
obtain the maximumyield of biochar before ending the exothermic
step; however, there is a possibility of a resulting unstable state of
carbon (Restuccia et al., 2019). As the heat from the pyrolysis re-
action declines, it require additional heat input to maintain or in-
crease the temperature throughout the slow pyrolysis process to
increase the yield of biochar and percentage of fixed carbon (Cong
et al., 2018).

Pyrolysis reactors for slow pyrolysis processes are further clas-
sified into kilns, converters, and retorts (Garcia-Nunez et al., 2017).
Thermally insulated reactors are traditionally known as kilns,
which are primarily known to produce self-sufficient temperatures
during biochar formation from wood logs (Heredia Salgado et al.,
2020). Industrial reactors are being developed for recovering bio-
char and other products from volatile fractions (liquid and syngas),
are called converters and retorts (Garcia-Nunez et al., 2017). More
specifically, retort reactors are being developed for large-scale in-
dustrial processes and the pyrolysis of large wood logs (over 20 cm
in diameter and over 30 cm in length) (Antal and Grønli, 2003).
Converters produce biochar by carbonizing biomass particles such
as wood chips or wood pellets under conditions similar to those of
intermediate pyrolysis, as described previously by Garcia-Nunez
(Garcia-Nunez et al., 2017). Wood biomass is most widely
researched and commonly used for high-quality biochar produc-
tion (Domingues et al., 2017), and also preferred for thermo-
chemical conversion owing to its low ash content (De Souza et al.,
2020).

Exothermic reactions with wood biochar also turn into ash
content typically around 1.5e5%, while biochar with a fixed carbon
content is 60e70% and the volatile matter (VM) varies from 20 to
35% by weight ratio (Ronsse et al., 2013). The biochar produced at
the exothermic reaction stage contains considerable amounts of
VM (Panwar et al., 2019); thus, it has to be further processed to
remove such content, improve porosity, and recover a sizable
amount of syngas. That report further reveals that additional
heating is essential to increase the fixed carbon content, surface-
area-to-volume ratio, and biochar porosity through emitting and
disintegrating the residual volatile compound content. The yield of
biochar from oven-dry wood feedstocks may vary from 25 to 30%
(w/w) at temperature of 550e600 �C with a fixed carbon content of
about 80e85% and volatile compound content of about 10e12%
(Antal and Grønli, 2003). Thus, the fixed carbon content and sta-
bility of biochar normally increase with the pyrolysis temperature
(Crombie et al., 2013). This phenomenon is due to the further
release of volatile compounds and gaseous content from the
biomass with an increase in the pyrolysis temperature, forming
biochar with large pores and increased surface area (Tomczyk et al.,
2020). That report provided detailed information about the fixed
carbon, volatile matter (VM), weight fractions of moisture, and ash
content in biochar. These observations suggest that with the careful
tuning of the pyrolysis temperature (Liu et al., 2020) and choice of
biomass feedstock, is likely to be transformed into highly desired
biochar having multifunctional physicochemical properties
(Table 2). Similarly, it is liable to produce biochar with a “fine
design” that has specific characteristics for emerging potential
applications.

McBeath et al. recently examined the impact of feedstock
choices on the quality of biochar, their stability, and yield of biochar
under an inert H2 atmosphere (McBeath et al., 2015). They revealed
a trade-off between improved stability of aromatic polycyclic car-
bon content and reduced biochar yield as temperature increases,
ranging from 500 to 700 �C, for most common feedstocks (wood,
grass biomass, paper mill waste, domestic animal manure, macro-
algal biomass, etc.). Biochar obtained from wood feedstocks
(pinewood and hardwood) is known for its high recalcitrance of



Table 2
Pyrolysis of different types of feedstocks and physicochemical properties of biochar samples from manufacturers.

Biomass T (�C) Total carbon (%) Carbon sequestration (%) Fixed carbon (%) Yield (%) Ash (%) VM (%) CEC (cmol kg�1) Surface area (m2 g�1) pH

Wheat straw 500 62.9 26.4 63.7 29.8 18.0 17.6 95.5 33.2 10.2
Grass 500 62.1 28.0 59.2 27.8 20.8 18.9 84.0 3.33 10.2
Sawdust 500 75.8 28.5 72.0 28.3 9.94 17.5 41.7 203 10.5
Peanut shell 500 73.7 34.4 72.9 32.0 10.6 16.0 44.5 43.5 10.5
Waterweeds 500 25.6 47.1 3.84 58.4 63.5 32.4 509 3.78 10.3
Chlorella 500 39.3 33.0 17.4 40.2 52.6 29.3 562 2.78 10.8
Waste paper 500 56.0 24.7 16.4 36.6 53.5 30.0 516 133 9.88
Wastewater sludge 500 26.6 21.1 20.6 45.9 61.9 15.8 168 71.6 8.82
Shrimp hull 500 52.1 34.3 18.9 33.4 53.8 26.6 389 13.3 10.3
Pig manure 500 42.7 26.6 40.2 38.5 48.4 11.0 82.8 47.4 10.5
Cow manure 500 43.7 41.8 14.7 57.2 67.5 17.2 149 21.9 10.2

aVolatile matter (VM), Cation exchange capacity (CEC). The tabular data were adopted with significant changes from the references (Zhao et al., 2013), copyright 2013 Elsevier
B.V.

Fig. 2. Relation of pyrolysis temperature increase with biomass decomposition.
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carbon (Domingues et al., 2017), with a relatively low ratio of total
organic carbon to stable polycyclic aromatic carbon. However,
biochar derived from agriculture residues or grass biomass has low
carbon content, but relatively with a high ratio of total organic
carbon phase to stable polycyclic aromatic carbon phase (Jindo
et al., 2014). It has also been revealed that biomass feedstocks
with high moisture content (45e65%) can be an attractive option
for preparing biochar with increased yield, particularly under high-
temperature and -pressure conditions (Wang, L. et al., 2013).

A comprehensive report by Zhao et al. also reported that biochar
characteristics and their functionalities more relative to the pyrol-
ysis temperature, the biomass choice, and structural heterogeneity
features (Zhao et al., 2013). It was also demonstrated that the py-
rolysis temperature can influence the pH of biochar and its surface
area (Pariyar et al., 2020). Furthermore, the mineral distribution,
stable carbon, potential sequestration capacity, organic carbon, and
ash content of biochar materials are mainly influenced by the
choice of biomass feedstock and its composition (Zhao et al., 2019).
The peak temperature is the most significant factor influencing the
features of the final biochar prepared by the slow pyrolysis process
(Zhang, H. et al., 2020). Moreover, an increase in the peak tem-
perature enables the rapid formation of biochar with a higher
content of fixed carbon, aromatic characteristics, and higher
porosity (Tomczyk et al., 2020). These properties are important to
increase the stability of the fixed carbon in the biochar and thus
improve the nutrient and water retention capacity when applied
for soil amendment purposes (Hagemann et al., 2017). The chem-
ical reactions and physical changes in biomass materials during the
pyrolysis process are multifarious and likely dependent on the
reactor type, settings, heating rate, and composition of the biomass,
as described in the subsequent section. The primary basis for this
phenomenon is illustrated in Fig. 2: specifically, the enhanced
release of VM and its relationwith a decrease in the yield of biochar
during the pyrolysis stage (Becidan, 2007). We recommend further
detailed studies on the influence of the peak temperature in the
pyrolysis process on both biochar characteristics and applicability
to confirm these preliminary findings.
3. Biochar formation mechanism

Since the main precursor of biochar from pyrolysis is biomass,
during biochar production, its mechanism and composition/struc-
tural characterization are important aspects to understand the
pyrolysis process (Babu, 2008). An understanding of the biochar-
formation mechanism is essential (Keiluweit et al., 2010), since
full information on the chemical reactions and physical conversions
occurring is important to consider controlling the surface area and
porosity (Leng et al., 2021), surface morphology (Komnitsas and
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Zaharaki, 2016), chemical and physical structure (Sun et al., 2012),
and surface functionalities of the resultant biochar materials (Liu
et al., 2015). Lignocellulose-rich biomass mainly comprises cellu-
lose, hemicelluloses, and lignin, and the respective components
pyrolysis at a particular temperature condition and via various
pathways, reactions, and mechanisms (Yang et al., 2006). For
instance, during the pyrolysis process, decomposition of hemi-
celluloses occurs primarily at a lower temperature range from 200
to 250 �C, cellulose decomposes at themoderate temperature range
from 250 to 350 �C, and lignin converts at the higher temperature
range from 300 to 500 �C (Chen et al., 2018). The degree of ther-
mochemical conversion also depends on several other operating
parameters (Deng et al., 2016) (e.g., heating rate (Onsree et al.,
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2018)), residence time (Zhang and Zhang, 2019), peak temperature
(Ramesh and Somasundaram, 2020), reactor type (Resende, 2014),
biomass size/composition (Klinger et al., 2018). Furthermore,
intrinsic features, most key components of the biomass (e.g.,
hemicelluloses, cellulose, lignin, and inorganic content), also define
biochar properties and thus should be taken into account
(Kwapinski et al., 2010).

The molecular mechanism for biochar materialization is indi-
rectly governed by feedstock choice and the pyrolysis temperature
kinetics of the major components of biomass, namely, hemicellu-
lose, cellulose, and lignin as well as inorganic catalysts (Chen, T.
et al., 2017). It causes the pyrolysis mechanism for cellulose by a
reduction in the polymerization ratio, which can occur through two
primary reactions (Chen, L. et al., 2019). The primary reaction in-
volves the disintegration and charring of cellulose components at a
slow heating rate and low pyrolysis temperature (Dieguez-Alonso
et al., 2015), as typically occurs in slow pyrolysis (Amini et al.,
2019). The second reaction, like fast pyrolysis, involves the rapid
volatilization and simultaneous formation of organic compounds
with rapid heating rates at high pyrolysis temperature settings
(Tsubaki et al., 2020). Furthermore, cellulose depolymerizes into
oligosaccharide chains during the pyrolysis process, resulting in the
production of d-glucopyranose owing to the cleavage of the
glycosidic bonds (Fang et al., 2018). These compounds in turn un-
dergo secondary reactions like an intramolecular rearrangement
reaction (Ronsse et al., 2012) and forms a vital intermediate com-
pound called levoglucosan (Wang, Q. et al., 2020). As shown in
Scheme 2, biochar formation pathways are multifarious, including
exsiccation, dehydration, aromatization, decarboxylation, poly-
merization, intramolecular condensation, and rearrangement re-
actions resulting in solid carbon-rich biochar (Wan et al., 2020). On
the other hand, levoglucosan undergoes a chain of rearrangement
reactions and a dehydration process to produce hydroxyl-methyl-
furfural, which can further yield volatile products, like syngas and
bio-oil (Mettler et al., 2012).

Hydrodeoxygenation of lignocellulosic fast pyrolysis into bio-oil
as the main product (Ben�es et al., 2019), which can be further
processed and integrated with crude oil products (Talmadge et al.,
2014). The yield and composition of bio-oil can be dependent on
the type of biomass choice and molecular structures of the biomass
components (Mullen and Boateng, 2008). In general, biofuel
resulting from thewoody biomass pyrolysis often has high viscosity
and heating values and low water content (Papari and Hawboldt,
2015). In contrast, bio-oil resulting from agricultural biomass
(bagasse (Rabiu et al., 2018), rice straw (Maguyon-Detras et al.,
2020), rice husks (Cai et al., 2018)) is typically known to have low
viscosity, low heating values, and high water content (Isahak et al.,
2012).

From a chemical point of view, bio-oil contains water and
multiple types of organic compounds, including oxygenated
chemicals (e.g., ketones, phenols, aldehydes, carboxylic acid), long-
chain hydrocarbons, and lignin compounds (Oyebanji et al., 2018).
Some of these components are primarily responsible for the low-
quality bio-oil (e.g., strong corrosivity, low stability, low viscosity,
low heating value), which restricts its long-term storage and uti-
lization (Yang, Z. et al., 2015). Its main compounds, particularly
oxygenated ones including aldehydes, ketones, and carboxylic
acids, were found to be primarily accountable for such negative
features (Ruddy et al., 2014). We need further advancement in the
production processes and pathways to increase the quality of py-
rolytic bio-oil and make it more appropriate for additive in-
gredients or bio-fuels as illustrated in Fig. 3.

Improving bio-oil production mainly involves tuning the py-
rolysis process for catalytic cracking (Ibarra et al., 2016), hydroge-
nation (Reddy Kannapu et al., 2015), and steam reforming (Gil et al.,
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2016). The series of chemical reactions that can be employed for
bio-oil quality improvements comprise, hydro-deoxygenation,
catalytic cracking, aromatization, ketonization, and/or aldol
condensation (Li, H. et al., 2018). It primarily involves these
mechanisms in transforming the oxygenated compounds present
in bio-oil into low-molecular-weight hydrocarbons and aromatic
compounds, as well as syngas and hydrogen gas (Ro et al., 2018).
Catalytic cracking strategies for bio-oil has to mainly designed for
cracking CeC bond cleavage, scission of aromatic compounds’ side
chains, H-transfer, and deoxygenation in addition to isomerization
reactions, such as dehydration, de-carbonylation, and de-
carboxylation (Shen and Fu, 2018). There is a need to anticipate
the future for the biofuel industry that would be based on biomass
gasification coupled with hydrogen enrichment like potential
synergisms between biomass gasification and hydrogen production
technologies (Patra and Sheth, 2019).

Hemicellulose accounts for around one-third of the total dry
biomass, and it slightly differs from cellulose owing to its hetero-
geneous polysaccharide chains. However, pyrolysis behavior (Ben
et al., 2019), mechanism (Yang, H. et al., 2020), and reaction path-
ways for hemicellulose (Huang et al., 2016), is quite analogous with
those of cellulose according to a recent investigation (Yang, H. et al.,
2020). As shown in Scheme 3, the pyrolysis of hemicellulose begins
with the depolymerization of chemical structures, resulting in the
formation of oligosaccharides (Shen et al., 2010). Then, the glyco-
sidic bonds in the xylan chain are cleaved, which produce depoly-
merized compounds after rearrangement reactions (Li, L. et al.,
2013). This finally turns into 1,4-anhydrous-d-xylopyranose and
furfural, which act as intermediate products (Li, S. et al., 2020).
These products undergo further rearrangement reactions through
several complex pathways (e.g., dehydration, aromatization,
decarboxylation, condensation, and finally, intramolecular rear-
rangement) (Liu et al., 2014). Yang et al. recently reported detailed
reaction pathways for hemicellulose and their pyrolysis mechanism
after studying the evolution patterns of the functional groups by
using infrared spectroscopy equipped with two-dimensional
perturbation correlation (Yang, H. et al., 2020).

Lignin is a third important component, a phenolic polymer that
provides much mechanical strength and embedding structures; its
structure made with ligninecarbohydrate complexes is more
complex than hemicellulose and cellulose (Tarasov et al., 2018),
which makes the pyrolysis mechanism complex (Kumar and
Bhaskar, 2020). Unlike other components of biomass (hemicellu-
lose and cellulose), the lignin pyrolysis mechanism needs free
radical reactions are leading pathways (Custodis et al., 2014), and is
the most prominent mechanism involved in the transformation
lignin into either syngas, bio-oil, and biochar (Jiang, X. et al., 2018).
As shown in Scheme 4, free radicals are formed by cleavage of b-O-4
linkages present in the lignin component (Chu et al., 2013), and this
is the first stage in a lignin decomposition mechanism (Liu et al.,
2015). Furthermore, generated free radical reactions captures pro-
tons from each organic species having weak OeH/CeH bonds
(C6H5eOH) (Erfani Jazi et al., 2019), thereby generating organic
products, such as 2-methoxy-4-methyl phenol, catechol, syringol,
and vanillin (Kibet et al., 2012). In the time course of the reaction, it
transports free radicals onto the rest of the organic species, thus
leading to a series of chain propagation reactions (Kim et al., 2015).
Lastly, such chain propagation reactions get terminated once two
radicals collide with some other and form stable organic com-
pounds (Shen, Y. et al., 2017). Though detecting such free radicals
reactions during the lignin pyrolysis process is quite challenging
(George et al., 2014), thus illustrating the lignin pyrolysis mecha-
nismwith great precision remained an interesting task. Therefore, a
clear understanding of the free radical mechanism in the pyrolysis
process is yet to be established (Meng et al., 2014), by uncovering



Scheme 2. The molecular mechanism proposed for cellulose pyrolysis and formation of biochar. Reprinted with permission from the reference (Liu et al., 2015). Copyright (2015)
American Chemical Society.
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minute details of the lignin pyrolysis mechanism.
Along with the three major components of biomass, inorganic

content can also significantly influence the pyrolysis of biomass and
the formation of biochar materials (Boscagli, 2018). On the other
hand, Ca and Mg are bound to bind either covalently or ionically
with complex organic molecules and to be lost in a later stage by
vaporization at high-temperature conditions (Bourke et al., 2007).
During pyrolysis, covalent bonds form among P, N, and S elements
with organic compounds in the biomass, and the decomposition
process subsequently occurs at low pyrolysis temperatures (Shen,
Y. et al., 2017). The pyrolysis of biomass with inorganic constitu-
ents is also characteristically termed an autocatalytic process
(Ferreira et al., 2019), particularly for alkaline earth and alkali
metals Mg, K, and Ca, which cause important catalytic reactions
during biochar formation (Jiang, Z. et al., 2018). Furthermore,
potassium-containing biomass undergoes secondary cracking re-
actions, causing the subsequent breakdown of volatile organic
compounds produced in the pyrolysis process (Bridgwater, 2012).
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The K-mediated catalytic reactions increase the formation of
gaseous products, including carbon monoxide, carbon dioxide,
hydrogen, methane, and ethylene, which facilitate the further
cracking of biochar (Nuth et al., 2016).

On the other hand, in the case of lignocellulosic complex feed-
stocks, the autocatalytic pyrolysis process based on its intrinsic
inorganic elements alone is not adequate to produce desired
properties in biochar materials (Xiao et al., 2018). Using added
catalytic agents or inorganic catalysts can enable the pyrolysis
process at low-temperature conditions and short residence times
(Santosa et al., 2020), and in effect, it also enables the direct
preparation of nanocomposites or advanced hybridmaterials useful
in energy storage devices (Leng, J. et al., 2019). Further R&D is
required to explore effective catalysts during the conversion of
biomass components by tuning catalytic mechanisms to biochar
materials with the desired porous structures and functional groups.

Thus, several studies have been devoted to the evaluation of
catalysts in biomass pyrolysis (Imran et al., 2018), catalytic fast



Fig. 3. Different pathways to produce renewable fuels from various biomass resources including harvesting, grinding or chipping or pelleting, pretreatments, drying, torrefaction,
pyrolysis, upgrading, and fuel purification.

Scheme 3. The biochar formation mechanism for hemicellulose pyrolysis. Reprinted with permission from the reference (Liu et al., 2015). Copyright (2015) American Chemical
Society.
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Scheme 4. The biochar formation mechanism in lignin pyrolysis. Reprinted with permission from the reference (Liu et al., 2015). Copyright (2015) American Chemical Society.
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pyrolysis (Lu et al., 2018), catalytic biomass pyrolysis (Samolada
et al., 2000), and pyrolysis of biomass impregnated with inor-
ganic metals (Lu et al., 2018). However, the main goal of this
approach is the improvement of the effective and long-term sta-
bility of catalysts that are compatible with the vast range of inter-
mediate decomposition compounds resulting in lignocellulosic
biomass (Huang et al., 2017). It documents catalytic reactions in fast
pyrolysis of organic materials as an effective and flexible method to
transform available lignocellulosic materials into bio-fuel (Liu et al.,
2014). Additional studies are essential for the development of
effective catalysts appropriate for the transformation of organic
materials into biochar with desired properties, including nano-
composites with high porosity and surface functional groups.

With the increasing demand for renewable energy and chem-
icals, alternative biomass sources have to be explored, and we
should blend renewable fuels with the depleting petroleum-
derived fuels and chemicals (Levi and Cullen, 2018). The
emerging cellulose-to-ethanol industry can create large amounts of
lignin-rich biomass called hydrolyzed lignin, which may be further
utilized as raw biomass for pyrolysis and fuel formation (Kalyani
et al., 2017). We consider lignocellulosic biomass is the most
promising feedstock for sustainable fuels and biochemical products
(Den et al., 2018). Hydrocarbon materials obtained from lignocel-
lulosic materials are the most interesting products owing to their
relationship with prevailing technologies and higher energy den-
sity (Liu et al., 2014). Therefore, converting lignocellulosic biomass
into renewable and sustainable energy and fuels through fast cat-
alytic pyrolysis has attracted much attention recently (Yaman,
2004).
4. Physicochemical characteristics of biochar

4.1. Structural and morphological characteristics of biochar

First, various waste produced in the manufacturing of beer,
wine, sugar, flour, and vegetable oil and in the processing of wood,
it must be characterized prior to pyrolysis to examine the
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composition/micronutrients (Islam et al., 2018), characterization of
biomass wastes (Kwoczynski and �Cmelík, 2021), and contamina-
tion of heavy metals and metalloids in biomass (Yan et al., 2020)
and it may hampers the use of biochar in many sectors (Yao, Yan
et al., 2015). The comprehensive structural and functional charac-
terization of biochar materials have to be performed using different
instrumentations, including field-emission scanning electron mi-
croscopy (FE-SEM) (Ma et al., 2016b), high-resolution transmission
electron microscopy (HR-TEM) (Santhosh et al., 2020), inductively
coupled plasma atomic emission spectroscopy (ICP-AES) (Pourret
and Houben, 2018), energy-dispersive X-ray (EDX) spectroscopy
(Ma et al., 2016), Raman spectroscopy (Xu et al., 2020), Fourier-
transform infrared spectroscopy (FTIR) (Singh et al., 2016), X-ray
diffraction (XRD) (Shaaban et al., 2013), and many others as illus-
trated in Fig. 4. Recent advancements in characterization tech-
niques and mathematical modeling (Ranzi et al., 2017), including
dynamic TEM, aberration-corrected TEM, electron tomography, and
in-situ XRD, have helped researchers to reveal the physicochemical
characteristics of biochar, inorganic content stability, and the fate of
biochar materials (Ranzi et al., 2017). Many other physical and
chemical characterization techniques, including the X-ray photo-
electron spectroscopy (XPS) (Singh et al., 2014b), Brunauer,
Emmett, and Teller (BET) method (Angin and Sens€oz, 2014), FTIR,
and ICP-AES (Wang, J. et al., 2018), are possibly useful to charac-
terize the surface area and porosity of biochar materials as sum-
marized in Table 3. These methods can also be employed to
examine the composition of surface functional groups, comprising
OH, NH2, COOH, and C]O (Fahmi et al., 2018), and mineral content
(N, P, K, Mg, Ca, and S, etc.) (Xu, X. et al., 2014). Thermogravimetric
analysis, micro gas chromatography, the BETmethod, and the use of
N2 as a sorbate gas are recommended for the characterization of
surface texture and permeability features, including the porous
structures (Yang, J. et al., 2020) and biochar surface area (Rafiq et al.,
2016b). As an alternative to N2 gas, CO2 can also result better fea-
tures at higher temperatures; thus, CO2 adsorption-desorption
isotherms are found to be more accurate values (Gargiulo et al.,
2018), as the BET analysis of biochar (Castilla-Caballero et al., 2020).



Fig. 4. Different instrumentation and methods used in physicochemical analysis including molecular structures, surface chemistry, proximate and ultimate analysis of biomass and
biochar samples.
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The BET equation can determine the surface area, while the
microporous volume can be determined using the Dubinin
Radushkevich (DR) equation to calculate the narrow microporous
volume (Silvestre-Albero et al., 2012). The surface area of about
81m2/g of biochar produced using slow pyrolysis was found to be
much higher than biochar produced using fast pyrolysis (Tomczyk
et al., 2020), with well-developed pores with diameters of about
5e40 mm (Liu, Z. et al., 2017). In contrast, the fast pyrolysis of
switchgrass resulted in biochar with a typical surface area of
7.5e8.1m2/g without a significant presence of porosity. For
instance, the surface areas for biochar produced at a heating rate
from 30 to 1000 �C/h were about <10m2/g at low-temperature
about 450 �C. However, an increase in the surface areas of biochar
was evidenced sharply by more than 400m2/g after the tempera-
ture reached 750 �C (Brown et al., 2006). They have reported the
BET surface area values to range between 250 and 600m2/g as the
pyrolysis temperature increases. The biochar materials surface area
gets considerably influenced by the pyrolysis temperature but not
totally dependent on the heating rate, as reported recently (Gai
et al., 2014). These results showed that the high temperature dur-
ing pyrolysis can cause the broadening of the microporous struc-
tures owing to the breakdown of adjacent wall pores, thus resulting
in a reduction in microporous volume but an increase in overall
surface area and porosity volume.

The biochar prepared using the wood logs of Phyllostachys nigra
species was reported to have a lower surface area than that of
cellulosic fibers owing to the differences in the precursor's biomass
composition (Giudicianni et al., 2013). Indeed, this report further
revealed that wood has two major components (i.e., hemicellulose
and lignin) besides cellulose, which might inhibit the formation of
porosity during pyrolysis (e.g., the cellulose fraction is likely to be
entrapped in the compact matrix). Thus, surface analysis of acti-
vated biochar using BETcan be used to reveal the total pore volume,
microporous surface, and formation mechanism (Zhu et al., 2018).
The results for empty fruits of oil palm indicated that fine particles
showed a higher surface area than large biomass particles (Fahmi
et al., 2018). Furthermore, this report described the “bottleneck
phenomenon” where micropores enable the removal of possible
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obstructions present in the macroporous structures, like volatile
compounds or ashmaterials. Similarly, the role of the ash content in
the lowering surface area cannot be ignored, since it expresses this
degree per gram of material (Giudicianni et al., 2014). Furthermore,
to reveal this mechanism, a biochar sample was used to remove
alkali-soluble inorganic species using 1M NaOH solution. The
washed biochar material showed the presence of negligible ash
content, and despite an increase in the over-all pore volume and
total surface area by ca. 30%, but values seem to be lower than those
of biochar materials prepared using pure cellulose fibers (Gargiulo
et al., 2018).

The first systematic structural analysis of carbon material was
executed by (Franklin and Randall, 1951) using an XRD technique to
examine different crystallites of carbon categorized into two clas-
ses. One was graphitizing carbon characterized as having a com-
bination of sharp and narrow (002) XRD pattern reflection when
tested after thermal pretreatment. It identified the other class, as
non-graphitizing carbon that showed an XRD pattern with broad
(002) reflection when tested after similar treatment. Several other
reports have revealed additional details on the development of
carbon structures like porous graphene-like carbon (Gomez-Martin
et al., 2019), graphitic carbon structures (Harris, 2005), or graphitic
carbon from the lignin (Tam et al., 2020), during graphitization and
carbonization processes (V�azquez-Santos et al., 2012). A recently
developed technique like TEM with the high spatial resolution has
the potential to reveal graphitization behaviors precisely at the
nanoscale level in non-graphitizing carbon materials (Meier et al.,
2012). Subsequent research to determine the graphitization be-
haviors in carbon materials at the nanoscale supported the notion
that there is no possibility of achieving either absolute non-
graphitizing carbon or graphitizing carbon materials (Sharma,
2018). Non-graphitizing carbon would be an excellent precursor
(biomass) for the synthesis of graphitic carbon crystallites by per-
forming reactions during thermo-catalysis (Hata et al., 2002). For
instance, raw biomass having lignocellulosic components con-
verted into nano-structured graphitic carbon using catalytic iron
carbide nanoparticles is produced in situ through the carbothermal
reduction of the metal precursor iron nitrate (Thompson et al.,



Table 3
Various characterization methods reported in the literature for the analysis of biochar.

Characterization methods Results Remarks References

Thermogravimetric analysis Proximate
analysis

Fixed carbon calculation Torquato et al. (2017)

Muffle furnace Proximate
analysis

Volatile matter, ash content, moisture content Domingues et al. (2017)

CHNS/O combustion analyzer Ultimate
analysis

Organic functional groups, O C, H,N, and S analysis,
Elemental analysis

Bakshi et al. (2020)

Liquid chromatography Ultimate
analysis

Organic carbon detection Hagemann et al. (2017)

ICP-MS Ultimate
analysis

Elemental content Bachmann et al. (2016)

ICP-AES Ultimate
analysis

Elemental content Ma�sek et al. (2020)

Potentiometric titrations Ultimate
analysis

Atomic ratios of O/C, H/C, N/C Bakshi et al. (2018)

X-ray photoelectron spectroscopy Ultimate
analysis

types and contents of the functional groups (Li, Pengwei et al., 2020)

Volumetric energy density Ultimate
analysis

Calorific value Abdullah and Wu (2009)

SEM-EDX Ultimate
analysis

Elemental content of biochar Stella Mary et al. (2016)

FESEM Surface
analysis

Morphology of biochar surfaces Williams et al. (2018)

XPS Surface
analysis

Surface functional groups (Singh et al., 2014b)

(Brunauer-Emmett-Teller) method Surface
analysis

BET surface area (m2/g) Fahmi et al. (2018)

Polanyi theory Surface
analysis

Pore volume (cm3/g) Sigmund et al. (2017)

Dubinin-Radushkevich method Surface
analysis

Micropore volume (cm3/g) Hamzenejad Taghlidabad et al.
(2020)

(Brunauer-Emmett-Teller) method Surface
analysis

Average pore width (nm) Kwiatkowski and Kalderis
(2020)

FTIR Surface
analysis

Functional group Stylianou et al. (2020)

Zeta potentials analyzers Surface
analysis

Zeta potentials Long et al. (2019)

Contact angle system precision tensiometer Surface
analysis

Contact angle measurements Batista et al. (2018)

13C solid-state nuclear magnetic resonance
spectroscopy

Structural
analysis

Chemical structures of insoluble materials Fu and Jiang (2019)

Synchrotron-based techniques Structural
analysis

Oxidation states of biochar Lombi and Susini (2009)

X-ray Diffraction Structural
analysis

Polyaromatic carbon crystallite analysis Yoo et al. (2018)

Electron Energy Loss Spectroscopy Structural
analysis

Carbon and nitrogen speciation Hagemann et al. (2017)

Raman spectroscopy Structural
analysis

Structure stability of carbon Sousa et al. (2020)

1H solution nuclear magnetic resonance
spectroscopy

Molecular
analysis

Presence of hydrocarbons, acetic acid, ketones, alcohols, esters and
phenolics

Salami et al. (2020)

13 C magnetic resonance spectroscopy Molecular
analysis

aromatic carbon, aliphatic carbon, Xu, D.Y. et al. (2014)

GC/MS Molecular
analysis

Identification and quantification of pyrolysis products specified for each
chemical group.

Rombol�a et al. (2016)

Fourier transform ion cyclotron resonance mass
spectrometry

Molecular
analysis

Molecular characterization of biochar Zhang, P. et al. (2020)

Excitation-emission matrix fluorescence
spectroscopy

Dissolved organic matter released from biochar Gao et al. (2020)

Electrospray ionization fourier transform ion Molecular
analysis

Molecular characterization of biochar Smith et al. (2013)

Cyclotron resonance mass spectrometry Molecular
analysis

Characterization of biomass and biochar Aubriet et al. (2018)
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2015). In addition to XRD, TEM and Raman spectroscopy are also
sensitive techniques to examine the evolution of structural features
from less-ordered to graphitic carbon, and they are most suited to
monitoring the growth of tri-periodic order during the graphiti-
zation of carbon fibers (V�azquez-Santos et al., 2012).

The characterization techniques that reveal carbon nano-
structure, particularly HR-TEM and XRD, are most reflective of such
regions where aromatic fringes are assembled (Martin et al., 2019).
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Furthermore, this report revealed that applications of both mass-
spectrum and HR-TEM are typically found consistently with un-
ceasing curved molecular and nanostructures at layer arrangement
regions. These techniques are sensitive and useful for under-
standing aromatic network-like structures regarding the arrange-
ment perspectives and are not applicable for examining single
layers (Xiao and Chen, 2017). Onion-like multi-walled graphitic
structures of charcoal was also observed (Hata et al., 2000), Raman-



G.S. Ghodake, S.K. Shinde, A.A. Kadam et al. Journal of Cleaner Production 297 (2021) 126645
HR-TEM study reported structural analysis of carbonized wood
(Deldicque et al., 2016), and microstructure of wood charcoal was
by using scanning probe microscopy (Kurosaki et al., 2003). Such
curved nanostructure of wood charcoal was also similar to that of
sucrose char prepared at 1000 �C in an oxygen-free environment;
the morphology and arrangement of fringes were identical to the
curved isotropic and low-degree of fringes curvature with an
anisotropic arrangement under identical conditions (Harris, 2005).
In the HR-TEM, one can see evidence of the assemblage of aromatic
layers networking via van der Waals forces. The important obser-
vation to be noted that is where a decrease in CeC bond length was
reported as the increase in the pyrolysis temperatures from 500 to
700 �C, representing that after the aliphatic-carbon converts into
aromatic-carbon (Xiao and Chen, 2017). Thus, such structural
characterization techniques are sensitive to examine biochar for
quaternary structure, including graphene-like fringes, aromatic
clusters (nano-, macro-sized), heterogeneous phases, and atomic
arrangement. Such physicochemical characteristics have to be
subtly understood to improve our anticipation over molecular
structures of biochar, which would upsurge the development of
novel functionalities and assist to make a well-defined molecular,
structural, and functional guide for developing potential applica-
tions for biochar materials.

Many scientists have now studied the pyrolysis of biomass and
their decomposition on the basis of three main biomass compo-
nents (Pasangulapati et al., 2012), effect of the biomass components
(Burhenne et al., 2013) like lignin, cellulose and hemicellulose (Qu
et al., 2011), Thermogravimetric analyzer (TGA) (Ambalae et al.,
2006), kinetic analysis (Vuppaladadiyam et al., 2019) and density
functional theory are frequently employed techniques (Wang, Q.
et al., 2020). Most of them studied the dry weight mass loss char-
acteristic feature in a continuous mode for biomass samples using
the TGA to realize pyrolysis mechanisms for various biomass.
Alternatively, the mass loss in overall biomass samples determined
by TGA analysis usually ranges from less than that of 15e20mg (El-
Sayed and Mostafa, 2015), when the solid waste from municipal
and industrial are complex in nature (Abdel-Shafy and Mansour,
2018) and distribution of their components and shapes are also
uneven (Zhou et al., 2014). Thus, it may be challenging to keep
consistency in TGA results and product quality from such biomass
samples. Therefore, kinetics of pyrolysis, thermal decomposition
behavior and catalytic pyrolysis studies (Wang, L. et al., 2018), and
some other factors have suggested conducting using fixed-bed
reactor (Aguiar et al., 2008), for three main components of
biomass (Burhenne et al., 2013).

To obtain highly reproducible results for individual biomass
samples or in mixtures, a fixed-bed reactor has recently developed
by researchers and was equipped weight-function in a real-time
analysis called macro-TGA system (Zhou et al., 2015). That report
further reveals that the mass loss of a biomass sample determined
by macro-TGA can be accurate and was in the range from 0.5 to 4 g,
that allows us to examine thermal decomposition pattern of pris-
tine biomass samples also in their mixture similar way to that of
conventional TGA measurements. We recommend thermal treat-
ment of biomass samples in addition to some other treatments
including combustion, pyrolysis, and gasification with CO2 for
specific biomass components that can be conducted to obtain
essential data with or without the simulation system mounted.
Field and laboratory-scale experiments with precise focus on
ignition and pyrolysis in addition to sufficient depiction of physics-
centered modeling and fuel characteristics are required for
improved understanding of the combustion process. In future
studies, there is a need to focus on the detailed assessment of
thermal decomposition in both settings an oxidative atmosphere
and an inert environment using macro-TGA.
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Besides this further examination of biomass components using
series of simulation in a five-component model (cellulose, hemi-
cellulose, pectin, lignin, and starch) and in comparison with three
biomass model (cellulose, hemicellulose, and lignin components)
needs be directed for vast ranges of biomass samples while
comparing and understanding pyrolysis of biomass components’
and their combustion behaviors using macro-TGA (Meng et al.,
2015) and their pyrolysis characteristics using conventional TGA
(Long et al., 2017). Long et al. compared combustion and pyrolysis
characteristics with differential thermogravimetric (DTG) (wt %/�C)
and thermogravimetric (TG) (wt %) curves of the various biomass
components and orange peel, Chinese cabbage, and poplar stem
with TGA and macro-TGA, respectively (Long et al., 2017). They
revealed the fate of VM, and fixed carbon and finally compared
corresponding to the proximate analyses for various biomass
samples (Table 4). The fixed carbon and ash are most present in the
lignin component is most, while VM is least, and hemicellulose
content is in between to those of lignin and cellulose (Demirbaş,
2003). However, proximate analysis of hemicellulose is found to
be close to those of the pectin component (Zhou et al., 2017),
wherein ultimate analysis shows it to be significantly more like
cellulose and starch (Gunnarsson et al., 2008). These results
correspond to the alkaline process where sulfur content in lignin
components is higher than those in other components (Arapova
et al., 2020). Other report revealed that the correlations that are
in accordancewith proximate analysis, usually offer a cost-effective
analysis (Kieseler et al., 2013), however, are liable for less accuracy
as compared to the correlations that are based on the ultimate
analysis.

Long, Y. et al. report further revealed that the VM ismost present
in starch and cellulose and that their proximate analyses were
identical; results agree with starch and cellulose having identical
biomass components, wherein glucose compounds get attributed
via b(1/4) and a(1/4) linkages, respectively. Arapova et al.
further described the basic principles involved in the application of
microwave technology and their precise stimulation to understand
the decomposition of the lignin structure, to ease the conversion of
lignin-rich biomass into biogas (Arapova et al., 2020). The proxi-
mate and ultimate analysis (weight %) reported for lignin-rich pine
biomass and their several biochar samples during the increase of
carbonization temperature from 300 to 1000 �C (Yoo et al., 2018). A
recent report has developed an analytical technique to perform a
proximate analysis of Chlorella vulgaris and Spirulina platensis algal
biomass samples (Jabeen et al., 2020). That report suggested a
three-step procedure: a thermogravimetric analyzer (TGA)-based
method for the proximate analysis estimating fixed carbon and VM
at 600 �C and in the air for determining ash content. The ultimate
analysis summarized for various biomass samples corresponds to
the aforementioned reports for proximate analysis of various
biomass samples (Table 5). The pyrolysis of main biomass compo-
nents can analyze using TGA curves, however, derivative or DTG
curves are highly sensitive than that of the TGA curves. El-Sayed
and Mostafa, we can perform the DTGA measurement in either
non-isothermal or isothermal settings; the prior method is known
for their advantages such as short measurement time, and fewer
data sets processing, as well as decomposition kinetics, can be
explored over a full temperature range around-the-clock and thus,
reduces the experimental errors caused during thermal initiation
time. Therefore, most investigators adopt a non-isothermal system
to examine the decomposition kinetics of biomass materials. It is
thought that, the pyrolysis system will be in a solideliquid phase
when temperature reach higher than that of the melting point
called ternary eutectic (~400 �C).

While considering the amplification of the changes in the TGA
curves for highlighting the differences in repeated experiments for



Table 4
Proximate analysis (dry basis wt%) reported for various types of biomass.

Sample Moisture (%) Volatile matter (%) Fixed carbon (%) Ash (%)

Blackbutt wood (Wilson et al., 2018) 5.3 79.5 18.9 1.6
Camellia oleifera shells (Fan et al., 2017) e 74.68 21.95 3.37
Wheat stem (Wilson et al., 2018) 2.4 71.4 17.7 10.9
Timothy grass (Nanda et al., 2012) 5.6 78.2 12.6 3.6
Rice husk (Yao et al., 2016) 2.3 67.69 16.10 16.21
Cotton stalk (Yao et al., 2016) 4.7 66.04 18.67 2.72
Pruned plum (Vo�ca et al., 2016) 7.10 69.75 21.07 2.10
Pinewood (Nanda et al., 2012) 6.8 71.7 19.2 2.3
Poplar wood (Kieseler et al., 2013) e 81.9 17.0 1.1
Microalgae (Hossain et al., 2017) 85 67.3 24.8 3.2
Sewage sludge (Gao et al., 2017) 6.30 54.06 7.80 31.84

Table 5
Ultimate analysis (dry basis wt%) reports corresponds to the proximate analysis
summarized for various types of biomass.

Sample C (%) H (%) N (%) S (%) Oa (%)

Blackbutt wood 48.9 6.60 0.10 0.3 44.20
Camellia oleifera shells 47.21 5.45 0.43 0.17 46.74
Wheat stem 47.4 6.70 0.20 0.2 45.50
Timothy grass 43.4 6.10 1.30 0.1 45.40
Rice husk 41.76 5.24 0.30 0.08 36.30
Cotton stalk 44.2 5.66 065 0.20 46.49
Pinewood 48.9 6.2 0.10 0.10 42.50
Poplar wood 48.6 6.5 0.1 0.1 43.6
Microalgae 46.3 6.9 7.3 2.3 32.6
Sewage sludge 35.16 5.44 5.61 e 15.64

a Oxygen by difference.
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different biomass samples (Long et al., 2017). Differential thermal
gravimetric analysis (DTGA) is an analytical method that de-
termines the degree the weight gain or weight loss of biomass
material as the effect of temperature and also can be used to
determine kinetic parameters (El-Sayed and Mostafa, 2014). At this
point, overall mass loss is an sign of emission of volatile compounds
starts approximately from 230 to 390 �C, which is also known as a
devolatilization temperature (Fermoso et al., 2010). Some research
accounts provided state-of-art approaches to achieve precise
devolatilization of biomass fuels and biomass components (Biagini
et al., 2006b), devolatilization of secondary fuels (Biagini et al.,
2004), and also devolatilization behavior and pyrolysis kinetics
(Jeguirim et al., 2014).

Devolatilization is the initial step and central mechanism in
almost all thermal processes and also forms a huge amount and
diverse range of gaseous volatile species and the final product
called solid carbon residue (Jankovi�c et al., 2020). In some of the
reports, devolatilization of biomass samples of different composi-
tion, properties, and origin suggested studying in a combination of
TGA and infrared spectroscopic measurements. Different gas
products (including CO2, CO, CH4, HCOOH, CH3OH) are released in
addition to these more complex organic compounds (oxygenated
and hydrocarbon) since the broad range of volatile species get
released simultaneously in a narrow temperature range (Biagini
et al., 2006). The basic reasons for mass loss and devolatilization
of biomass are greatly dependent on their chemical components;
therefore, the validating results and correlation permits us to pre-
dict devolatilization behavior, plant designing, handling, and real-
world applications, as well as kinetics and modeling of data sets
(Grønli et al., 2002). This report further describes that the under-
standing of the devolatilization kinetics may aid us considerably in
improved planning for central industrial processes since pyrolysis
mechanisms are not only non-dependent thermos-conversion
technologies but also are part of the conventional combustion and
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gasification processes. Thus, TGA should be systematically
employed for the examination of the devolatilization behavior for
several kinds of biomass samples, including a range of wood and
agroforestry residues (Ballice et al., 2020). However, researchers
should consider main objectives in order to quantify the variations
between both softwoods and hardwoods (Kim et al., 2007), with
different quantities and chemical components, in addition to
determining the involvement of particular mechanism, corre-
sponding devolatilization reactions, together with sets of kinetic
considerations such as coefficient of reaction rate and activation
energy (Pecha et al., 2019). Thus, in-situ or online monitoring of
technical data can help researchers discover in-detail the mecha-
nism of pyrolysis, characteristics of complex lignocellulosic
biomass, and their performance during the pyrolysis process (Chen
et al., 2020). Therefore, future work must focus on in-situ or online
monitoring systems and characterization techniques using TGA
coupled with FTIReMS (Gao et al., 2013) and pyrolysis equipped
with GC/MS (Gu et al., 2013) or other modern characterization
methods based on synchrotron-based X-ray absorption includes
near-edge X-ray absorption fine structure (NEXAFS) spectroscopy
(Lehmann et al., 2005), 2D NMR analysis of biomass and biochar (Le
Brech et al., 2015) and solid-state 13C NMR spectroscopy (Baccile
et al., 2014).

In addition to the techniques mentioned above, some in-depth
characterization techniques are now available for researchers
(Halleraker et al., 2020) that can be used to identify fine structural
differences in biochar (Igalavithana et al., 2017). For instance, a
solid-state 13C NMR could be widely applicable for comparing
resonance peaks based on the total resonance intensity and pro-
vides information about the relative number of individual func-
tional groups in biochar produced at different pyrolytic conditions
(Li, X. et al., 2013a). A solid-state 13C NMR technique is likewise
useful to examine influence of feedstock and pyrolysis temperature
on biochar carbon chemistry (McBeath et al., 2014), differences
between the carbon structures and biomass samples at different
heating rates and temperature conditions (Cim�o et al., 2014).
Furthermore, 13C NMR results can be successfully used to
demonstrate that carboxyl C structures and O-alkyl C disappear
when the temperature approaches from 300 to 400 �C, whereas
alkyl C signals turn stronger can be a good indicator of successful
pyrolysis (Chen et al., 2014). However, the evolved alkyl C signal has
to disappear at higher pyrolytic temperatures (500 �C), and more
aromatic carbon structures have to appear studied using fast field
cycling NMR relaxometry method (De Pasquale et al., 2012). These
studies can be used to reveal that the aromatic carbon structures in
the main biochar product form after reaching a pyrolysis temper-
ature higher than that of 500 �C. A solid-state 13C NMR can be
similarly applied to analyze biochar stability, especially in natural
settings like the soil (Kan et al., 2020), since there is a strong
relationship between biochar stability and degree of aromatic
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carbon condensation and the initial non-aromatic carbon content
(Leng, Lee et al., 2019).

In a previous study, stable biochar samples were successfully
obtained from a diverse range of biomass feedstocks and validated
using a solid-state 13C NMR technique (Singh et al., 2012). They
reported the aromatic carbon forms in biochar at 400 �C to be less
stable than that of the biochar prepared at 550 �C. After evaluating
literature available on 13C NMR data (Ben and Ragauskas, 2011) and
the behavior at the interface between the biochar and soil minerals,
the average self-life of the carbon in biochar amended soil (Yang, F.
et al., 2016) may vary from 90 to 1600 years owing to the degree of
aromatic carbon.

Fig. 5 shows the 13C NMR spectral data for biomass materials
and their respective biochar produced using increasing pyrolysis
temperature conditions. The cross-polarization magic angle spin
for biochar obtained at 200 �C revealed the resonance for alkyl C at
d¼ 0e45 ppm, for C of O-alkyl at d¼ 45e110 ppm, and for C of
carboxyl at d¼ 160e190 ppm, that were normally allocated to
lignin, cellulose, and hemicellulose components, respectively
(Baldock and Smernik, 2002). These results postulate that the py-
rolysis of biomass cannot be accomplished completely in low-
temperature condition (200 �C). The C of carboxyl and O-alkyl
carbon structures disappears as increases temperature from 300 to
400 �C. Lastly, as the pyrolysis temperature increases further up to
500 �C, the alkyl C structures in the biochar start getting cracked,
forming carbon-rich aromatic structures at about d¼ 128, ppm
(Chen et al., 2014). Thus, the results and previous reports confirm
that aromatic C is the major component of stable biochar materials
that have to be mass-produced at or above 500e600 �C (Zhao et al.,
2013).

The use of various techniques collectively can provide a viable
strategy to define pyrolytic parameters more accurately and better
Fig. 5. 13C NMR spectra showing cross-polarization magic angle for biomass materials
and biochar produced at increasing pyrolysis temperature. Elsevier B.V Copyright 2014.
Reprinted with permission from Reference (Chen et al., 2014).
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clarify the pyrolysis mechanism and performance of complex
lignocellulosic biomass during the thermochemical reaction
(Mourdikoudis et al., 2018). The clarification of different pyrolysis
mechanisms may fill information gaps and provide new scientific
understandings regarding the behavior of the specific chemical
components (Liu, W.-J. et al., 2017). Thus, researchers need to use
these suggestions to establish more effective pyrolysis methods for
vigilant and well-organized conversion of biomass feedstocks
while simultaneously avoiding the formation of undesired biochar.

4.2. Surface chemistry of biochar

The main postulation for the desired properties of biochar has
been those of large specific surface area (Li, Pengwei et al., 2020),
excellent ion exchange capacity (Munera-Echeverri et al., 2018),
and resultant surface chemistry prominent to provide high-
performance sorption capacity for soil nutrients (Yao et al., 2012),
organic and inorganic pollutants (Abbas et al., 2018), and gaseous
pollutants (Chen et al., 2015). Biochar formed at higher tempera-
ture ranges is likely to have more chemical and biological recalci-
trance, which is an important property to present as a potential
candidate for carbon sequestration by introducing into the envi-
ronment or soil (Yang, Gan et al., 2015). However, with pyrolysis at
high temperatures, biochar loses its surface functionality owing to
more aromatic condensation reactions (Fang, Q. et al., 2014).
Therefore, biochar produced at lower and moderate temperatures
(400e600 �C) has the possibility of having a diverse range of sur-
face functionalities (Banik et al., 2018). The biochar surface chem-
istry varies considerably owing to the highly heterogeneous nature
of biochar depending on both unstable and stable C composition
(Batista et al., 2018). The critical impact of surface behaviors of
biochar materials originates basically from the surface chemistry,
which typically shows a variety of hydrophobic and hydrophilic
functionalities, usually in basic and acidic environments
(Ebrahimzadeh Omran et al., 2020). The appearance of chemical
bonds in the decomposed biomass during pyrolysis leads to the
development of various surface functionalities (Tomczyk et al.,
2020), including hydroxyl, eOH; amino, eNH2; carboxyl, e((C]
O)OH); nitro, eNO2; ester, e(C]O)OR; ketone, eOR; aldehyde,
e((C]O)H). This occurs predominantly on the external surfaces
rather than on pore surfaces (Xiao et al., 2018). The heterogeneous
nature of biochar surface can be attributed to the complexity of
surface chemistry, which in turn, affects its interactionwith a broad
range of inorganic elements and organic compounds present in the
environmental sites (Kharel et al., 2019). In addition, soil nutrients
like N, P, K, and S are integrated into the stable C portion and porous
structures of biochar materials result into surface heterogeneity
because of differences in electronegativity between the aromatic
carbon and the heteroelements (Shen, Z. et al., 2017).

Some of other modern techniques are useful for biochar char-
acterization (Amin et al., 2016), surface chemistry of activated
carbons includes, potentiometric titrations (Salame, II and Bandosz,
T.J., 2001), and temperature-programmed desorption (TPD) studies
(Chunfei et al., 2012). To build deep understanding of the surface
chemistry of biochar materials (Xiao et al., 2018), physiochemical
properties (Jian et al., 2020) and the diverse range of surface
functionalities and their composition demands comprehensive
studies on biochar materials. TPD and various titration methods are
useful for the detection of specific functional groups (Salame, I. and
Bandosz, T., 2001), typically for nitro groups that appear deep in the
carbon matrix owing to nitration during the oxidation in the
presence of HNO3. The surface functionalities depend on the py-
rolysis conditions, the choice of starting biomass, and the use of
slow pyrolysis vs. fast pyrolysis (Fahmi et al., 2018). Functional
groups containing oxygen, especially carboxylic and hydroxyl
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functional groups, are known to dominate the biochar surface area
produced using fast pyrolysis and are modest for biochar derived by
slow pyrolysis (Brewer, C.E. et al., 2009). However, biochar derived
from slow pyrolysis is known to result in aromatic CeH functional
groups with much greater abundance than that derived from fast
pyrolysis. An out-of-plane band characteristic of the aromatic CeH
bending mode was also reported between 600 and 1000 cm�1 as
the pyrolysis temperature progresses further (Keiluweit et al.,
2010). If the bands in the FTIR spectra related to oxygen show
reduced intensity, this indicates excessive pyrolysis; this is due to
the elimination of oxygen-containing groups (labile functional
groups), which are typically anticipated at high pyrolysis temper-
atures (Saha et al., 2019).

Physicochemical properties that can influence the dominance of
biochar products as a soil amendment products include surface
area, surface charge, porosity (Baltr _enait _e-Gedien _e et al., 2020),
anion and cation (AEC (Lawrinenko and Laird, 2015) and CEC
(Hailegnaw et al., 2019)), and inorganic nutrient content (Mao et al.,
2012). The oxygen-containing functional groups present onto the
biochar surfaces (Fan et al., 2018), especially carboxyl functional
groups (Uchimiya, M. et al., 2012), which are known to play a key
role in forming biochar with desired physicochemical properties
(Chatterjee et al., 2020), implications for environment (Semida
et al., 2019), and soil amendment (Wang, L. et al., 2020), and sus-
tainable agriculture applications (Lee et al., 2010). The carboxyl
group density on biochar surface decreases as the pyrolysis tem-
perature increases (Wang, D. et al., 2013), however, the surface
carboxyl's content onto various types of biochar remains identical
owing to the expansion in surface area at high biochar-producing
temperature (Yakout, 2017). Unpredictably, for carboxyl groups,
the dissociation pH property covers a broad range of pH values
(2e11), on the biochar surfaces owing to the diverse structural
micro-environments and chemical phases (Chen, Z. et al., 2015).
Various studies have shown that carboxyl groups determine the
overall performance of biochar materials as a soil amendment
agent (Uchimiya, Minori et al., 2012); these have reported that the
surface sites are those involves in ion-exchange, modulation of the
release and uptake of inorganic nutrient ions present in the soil
(Ding et al., 2016), thus promotes crop growth (Mao et al., 2012).
Protonation and/or deprotonation of the existing carboxyl groups
(Safari et al., 2019), directly govern the biochar's pH buffering ca-
pacity (Chen et al., 2015) and helps to modulate soil pH (Yuan and
Xu, 2012). In addition, the dissociation of surface charges from
carboxyl groups corresponds to the capacity of particulate biochar
to transport in soil and disperse into water (Wang, D. et al., 2013).
Several reports specified that the free radicals and redox properties
of biochar surfaces (Klüpfel et al., 2014), corresponds to the overall
content of oxygen-containing species (quinone moieties and
phenolic moieties) (Pr�evoteau et al., 2016) and condensed aro-
matics (Faheem et al., 2020), which can thus influence the bio-geo-
chemical cycles (Odinga et al., 2020) and plant-algal toxicity (Liao
et al., 2014).

To identify the mechanism of biochar specifically, it is an
ongoing necessity to understand the recent developments and fate
of carboxylic groups on surfaces of biochar to measure the disso-
ciation constants and chemical states, which are the important
factors to optimize the formation and applications of biochar
products (Li, J. et al., 2020). The molecular functional groups like
oxygen-containing carboxyl and hydroxyl groups and dynamic ar-
omatic structures of biochar are diverse and mainly can be influ-
enced by pyrolysis temperatures (Zhou et al., 2019). Biochar
undergoes substantial transitions in terms of physical-chemical
reactions as the pyrolysis process progresses (Keiluweit et al.,
2010); for example, the lignocellulosic H-bonding (OH/O)
network was fragmented, and the primary free hydroxyls groups
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get oxidized into carboxyls at the pyrolysis temperature of
approximately �500 �C (Harvey et al., 2012). Biochar materials
develop nano-scale pores, with increased surface area and dehy-
drogenated methylene groups (ReCH2eR¼ R]CHeR¼ R]]C]
R) to make dynamic molecular structures with correspondingly
more condensed porosity at high temperatures (Chen et al., 2008).
The surface functionalities and nano-scale porous structure present
on biochar surfaces may influence carboxylic groups by being
involved in making their chemical transitions, dissociation prop-
erties, and molecular structural micro-environments (Lian and
Xing, 2017). Therefore, it would be quite useful to gain deep
comprehensive understanding regarding quantitative characteris-
tics of carboxyl groups on the compositional and molecular struc-
tures of biochar products.

So far, it has been a great challenge to identify contents
comprehensively, including the dissociation constants (pKa) and
chemical transition of carboxyl groups present on the solid biochar
surfaces using any single characterization technique. Mukherjee
et al. used Boehm titration to investigate the surface chemistry of
biochar prepared using wood species like Pinus taeda, Quercus
lobata, and grass species Tripsacum floridanum at different tem-
perature conditions, of 250, 400, and 650 �C (Mukherjee et al.,
2011). Boehm titration is a characteristic acid-base titration tech-
nique specifically established to determine the content of organic
acid functional groups organic acids (carboxylic acids, phenols,
humic-like substances) present on surfaces, quantifying the
amount of NaOH, Na2CO3, and NaHCO3 consumed by biochar par-
ticles (Tsechansky and Graber, 2014). An acid-base titration is
applicable even to quantify the dissociation properties of acid/base
groups present on the solid surface, especially activated biochar/
carbon, but has somemethodological limitations while considering
the pH-dependent deprotonation/protonation of acid/base func-
tional groups (Konkena and Vasudevan, 2012; Strelko et al., 2002;
Wang et al., 2004). An acid-base titration is applicable to determine
specific pKa values of the carboxyl groups present on the biochar
surfaces (Li, M. et al., 2014), however, their dynamics with pyrolysis
temperature conditions still remained unknown. Moreover, surface
characteristics of carboxyl groups are challenging to be understood
just by performing acid-base titrations (Xiong et al., 2021). Ex-situ
and in-situ infrared spectroscopic studies are also effective for
analyzing functional groups present on the solid biochar surfaces
(Uchimiya et al., 2013), including COOH, COOe, and some other
surface functionalities, such as CeOeC, eCH2, and aromatic
bonding C]C (Uchimiya et al., 2013). Attenuated total reflectance
(ATR) FTIR of fulvic acid humic acid can be monitored under
different pH conditions to identify carboxyl groups present on
humic acid substances and also their dissociation pH states
(Lumsdon and Fraser, 2005). As carboxyl groups can form ester
bonds and/or hydrogen bonds with hydroxyls that usually get
broke under alkaline environments (Chen, Wu et al., 2019), moni-
toring the dissolved organic carbon results from biochar with the
influence of pH change (Smebye et al., 2016), may also help to
distinguish carboxyl groups present on biochar materials and
products (Li, Xu et al., 2013b).

A better understanding of the surface chemistry and functional
groups of biochar is also important to identify the pyrolytic trans-
formation with the transformational dynamics and the stability
under different environment conditions (Li, X. et al., 2013a). In
addition to the simple carbon structures, in most common N/O-
containing functional groups, stability, and transformation are of
great significance in the development of novel biochar materials
and their applications (Oni et al., 2019). Data sets from all possible
advanced characterization techniques are also necessary to estab-
lish reliable interpretations and implications. Synchrotron-based
XAS techniques are now available to investigate dynamic
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molecular structures by both NEXAFS (Singh et al., 2014a), X-ray
absorption near-edge structure (XANES) (Lu et al., 2020), and 3D
structure modeling for biochar (Zhao et al., 2017). NEXAFS, XRD,
and FTIR were used to investigate the dynamic surface chemistry
for two different types of biochar: grass biomass-derived (lignin-
poor) and wood chips biomass (lignin-rich) biochar (Keiluweit
et al., 2010). This investigation revealed that different biomass
materials undertake an analogous route; however, they undergo
quantitatively distinct physicochemical transformations as an in-
crease in the pyrolysis temperature from 200 to 700 �C.

The details of such thermal transformations suggest that there
aremajor categories of biochar that include unique combinations of
chemical phases and physical states, as depicted in Fig. 6. These
categories are as follows: (1) crystalline features of the biomass
feedstocks are conserved in the transformation states of biochar, (2)
the initial aromatic poly-condensates and heat-transformed com-
pounds are combined arbitrarily in the amorphous phase of bio-
char, (3) graphene-like structures that are poorly ordered remain
ingrained in the amorphous phase of composite biochar materials,
and (4) graphitic crystallite structures embedded in a disordered
manner dominate this last category. The short-term mineralization
of C and N, dynamics of surface molecular structures of biochar
amended agronomic soil those are highly weathered also can be
studied by using NEXAFS techniques (Chen et al., 2014). It was
revealed that both N and C elements get enriched with heterocyclic
aromatic structures into the biochar materials as the pyrolysis
temperature increases (Yang, Gan et al., 2015). Such structural
transition decreases the mineralization rates for both N and C. The
NEXAFS spectra revealed that C]C 1s�p* transition observed at
285.3 eV is consistent with the CH3-, H-, or aromatic C structures,
which are more noticeable for wood than that of the grass biomass;
this can be attributed to the lignin content higher inwoody biomass
material (Urquhart et al., 2000).

Furthermore, researchers still lack sufficient information on the
surface charge presents onto the biochar materials. The surface
Fig. 6. Dynamic molecular structures and fixed carbon of biochar manufactured at differen
discrete phases. Reprint is with permission from reference (Keiluweit et al., 2010). ACS-Cop
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charge makes the biochar candidate either repulsive or attractive to
exposed charged organic metal ions (Fan et al., 2020), organic
molecules (Singh, R. et al., 2020), environmental organic pollutants
(Singh, R. et al., 2020), and with bacteria by forming a structure
with electrical double layers (Abit et al., 2012). Thus, biochar ma-
terials and activated carbons can show colloidal properties analo-
gous to the soil particulate matter. The foundation of surface charge
onto the biochar materials to be from their aromatic/aliphatic
surfaces and also from the functional group's dissociation, partic-
ularly carboxyl moieties (Harvey et al., 2012). Therefore, the biochar
surface charge greatly corresponds to the pH, particularly when
used in aqueous media. Furthermore, it can hold a negative charge
over a wide range of natural pH, from 4 to 12; however, in intense
acidic conditions, the biochar surfaces turn to hold a positive
charge. Therefore, when the pH rises above 4, the biochar surfaces
start becoming more negatively charged (Fang, Q. et al., 2014). On
the other hand, van der Waals interaction and other electrostatic
interactions also influence the migration of biochar particles, ions,
nanoparticles, and their organic molecules (Wang, D. et al., 2013),
and this property influences strongly and is governed by the pH or
aqueous phase. The relationships among biochar surface charge,
adsorption mechanisms, kinetics, and equilibrium are compre-
hensively discussed in recent literature (Tong et al., 2019).

Liao et al. has reported the relationship between the biochar
surfaces and their free radicals sites (Liao et al., 2014). This report
further revealed the significance of the persistent and quite abun-
dant free radicals present within corn stalks-, wheat straws-, and
rice straw-derived biochar as detected by electron paramagnetic
resonance spectroscopy. Odinga et al. published a detailed account
of free radical species evolved from carbon-affiliated radicals to
oxygen-affiliated and combined with oxygen-affiliated free radicals
density increases with increasing temperatures during pyrolysis
(Odinga et al., 2020). This report further reveals the important role
of aromatic carbon atoms involved in stabilizing the free radicals
present on the surface owing to the generation of aromatic surfaces
t charring temperature. Graphical illustration of different biochar categories and their
yright, 2010.
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that are electron-rich especially at high pyrolysis-temperature
conditions. Free radicals thus can be produced during the pyroly-
sis process (Qiu et al., 2007), and transitions in these free radicals
can be monitored simply through observations of in-situ environ-
mentally persistent radicals.

Though it is quite challenging to identify the specific sites for
most of the free radicals available, semiquinone and phenoxyl
radicals exist as characteristically expected to hold oxygen-
affiliated free radicals (Dellinger et al., 2007). Free radicals pre-
sent in the aqueous phase of the biochar can induce the release of
strong $OH radicals (Zhu, C. et al., 2015). The free radicals present in
the biochar might be the main cause that inhibits the germination
of seeds and hindrance shoot and root growth (Liao, Sun et al.,
2014), and also may damage the plasma membrane in plants and
bacteria (Gorovtsov et al., 2020). Other reports revealed that the
abundantly available free radicals of the biochar surfaces react and
to activate different chemicals, including hydrogen peroxide (Fang,
G. et al., 2014) and persulfate (Fang et al., 2015a). They also help to
degrade some various organic pollutants, such as diethyl phthalate
species (Fang et al., 2015b), 2-chlorobiphenyls (Fang, G. et al., 2014),
and also polychlorinated biphenyl compounds (Fang et al., 2015a).
Free radicals present within biochar materials derived at high
pyrolysis-temperature are responsible for their electron-accepting
capacity, as determined by electrochemical mediated analysis
(Klüpfel et al., 2014). More attention from researchers is needed to
examine environmentally persistent free radicals (Tao et al., 2020),
their toxicity to plant (Liao et al., 2014), neurotoxicity to animals
(Lieke et al., 2018) and humans as well as other negative impacts on
the environment (Odinga et al., 2020).
5. Bulk elements and inorganic content of biochar

The diverse element species bestow multi-functionality to the
biochar, with distinctive structures and functional features. Thus,
this section sheds further light on the elemental species, chemical
states, functionalities, potential applications, and global geochem-
ical cycling involved within biochar materials. It demonstrates
organic fertilizers prepared by biochar as an eco-friendly alterna-
tive to the mineral and chemical fertilizers, have better perfor-
mance, in terms of plant nutrition, plant growth, and overall yield
(Glaser et al., 2015). Therefore, it is important to characterize bulk
elements and inorganic contents that are composted or existing in
biochar and identified to exert considerable influence on the
agronomic value of biochar (Xiao et al., 2018). Various analytical
methods, including X-ray fluorescence (XRF) (Holden et al., 2018),
ICP-AES, and optical emission spectroscopy (ICP-OES) (Buss et al.,
2019; Tsai et al., 2018), have been revealed as important for
analyzing the inorganic contents of biochar (Clemente et al., 2018).
Both ICP-AES and ICP-OES are now being applied for the quantifi-
cation of the elemental species (Mg, Ca, Na, K, Mn, P, Fe, Mg, Al, Si,
etc.) characteristics of inorganic elements in biochar and ash (Liao
et al., 2007), and their fate in the soil environment (Low and
Table 6
Inorganic content (g/kg) for biochar derived from various biomass samples using fast py
from different reports (Brewer, C. et al., 2009; Leijenhorst et al., 2016; Liu et al., 2015; Ta

Sawdust Corncobs Corn stover

P 0.061 4.36 12.94
Mn 0.009 0.05 0.65
K 1.18 43.35 23.46
Mg 0.34 2.15 14.24
Ca 2.29 0.97 20.13
Fe 0.16 0.65 15.95
Si e 73.5 193.23
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Zhang, 2012). XRF has been applied to examine the inorganic
compositions of biochar in terms of the inorganic elements (Zhang
et al., 2015b). As shown in Table 6, the composition and types of
inorganic species are dependent on the types of biomass feedstocks
(Thy et al., 2013). Recent reports stated that the biochar derived
from the herbaceous biomass materials (e.g., wheat straws
(Tatarkov�a, V. et al., 2013), sugarcane bagasse (Nwajiaku et al.,
2018), chicken manure (Clemente et al., 2018), coffee waste
(Tangmankongworakoon, 2019), corn stover (Rafiq et al., 2016a),
and grass (Bakshi et al., 2020)) or hydrophytic biomass (water
weeds) (Su�arez-Garcı

́

a et al., 2002). showed significantly higher
content of inorganic elements than that of biochar derived from
woody biomass (Domingues et al., 2017). Furthermore, the effect of
temperature was also shown to have a significant influence on the
final composition of inorganic elements in the biochar materials
(Wang et al., 2019a). It was reported that the various metal con-
tents, including Mg, Ca, P, K, Cu, Zn, Fe, and Mn, in biochar, derived
from wheat straw and pig manure, noticeably increased with
increasing temperature from 200 to 650 �C (Zhao et al., 2013). The
key bulk elements in biochar were (C, O, H), as well as N in some of
the biochar samples. The fixed carbon content in biochar was
typically ranged from 40 to 60wt %, the oxygen content about
10e20%, and the hydrogen content about 2e5wt % (Brown et al.,
2011). The heteroatoms N, P, K, O, and S get merged into the aro-
matic carbon structures of biochar materials (Liu, W.-J. et al., 2019),
providing unique heterogeneity to the surface chemistry owing to
the diversity in electronegativity among these heteroatoms (Zhao
et al., 2013) and aromatic carbon atoms of biochar (Mian and Liu,
2018).

The inorganic elements are fundamental building blocks pre-
sent in the biochar materials. Elements within the biochar undergo
different physicochemical changes during the pyrolysis of biomass
and form different products and species, and are thus involved in
the diversity of biochar materials (Tomczyk et al., 2020). It sum-
marizes the inorganic species and their elemental composition for
various biomass samples (Table 6). Most of these inorganic ele-
ments are involves in the part of geochemical global cycles and are
present in different mass percentage and functionalities in the
biochar materials. As described above, among these elemental
species, C, O, H, and N are identified as themain element in biomass
samples and mostly contribute to the structure and surface func-
tion of the biochar. However, inorganic species like Fe, Si, S, and P
demonstrate a broad range of mass percentage in particular biochar
materials, whereas several of such elements act as potential nu-
trients for plants and crops (Ding et al., 2016). Some element spe-
cies (C, O, H, N, and S) in global cycles of geochemistry, are
identified as bidirectional in their cycling patterns from the atmo-
spheric source to the soil (Andreae et al., 2002), whereas some
specific elements (Si and P) are identified as unidirectional owing to
absence in the atmospheric environment.

In addition to carbon, O/N-having functional groups are the
typical functional groups in biochar (Duan et al., 2019), which
rolysis. Tabular data about the inorganic composition of biochar materials collected
tarkov�a et al., 2013; Zhao et al., 2013).

Grass Waterweeds Chlorella Wheat straw

0.59 0.51 4.36 e

0.01 1.02 0.91 e

5.15 3.22 13.67 10.2
0.53 0.66 0.77 1.3
5.23 23.13 17.50 3.2
0.15 0.55 0.40 e

e e e 7.2
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intrinsically contributes to their long-term stability (Uchimiya et al.,
2013), life cycle assessment of biochar-to-soil system (Matu�stík
et al., 2020), and series of transitions in the soil environment
(Zhou et al., 2020) and in the development of other biochar-based
applications (Leng et al., 2020). The volatile compounds are nega-
tively associated with the pyrolytic temperature (Rafiq et al.,
2016b), and a high volatile content is an indication of higher bio-
char reactivity and entails the negligible potential for use as a soil
amendment agent (Deenik et al., 2010). Furthermore, VM within
biochar forms readily and converts into oil or gas phases as the
temperature increases during pyrolysis (Lee et al., 2019). The fate of
inorganic species was reported for biochar derived from high-
nutrient biomass (Domingues et al., 2017), and mechanism of
nutrient retention and release reported for nitrate, phosphate and
other nutrient during composting (Joseph et al., 2018), and in other
case elements turns to non-volatile and accumulates within bio-
char materials either as elements or nano-particulate matter (Song
et al., 2019).

5.1. Oxygen carbon ratio

Themolar percentage of oxygen and carbon content can be used
to calculate the molar O/C ratio. A recent report sought to describe
the molar O/C ratio of the biochar prior to and after ozonization
treatment by performing the elemental analysis (Kharel et al.,
2019). Furthermore, that report showed higher carbon content of
biochar prior to the ozonization treatment (about 87.0mol %± 5.6),
while subsequent to the ozonization treatment, the carbon content
decreased up to 72.2mol % ±0.9. On the other hand, ozonization
treatment made substantial upsurge of 13.9mol % ±1.5 in oxygen
content wherein non-ozonized control had just 6.6mol % ±1.3 of
oxygen. These observations indicate that the ozonization treatment
process increases the O/C molar ratio by a factor of 2e2.5; the O/C
molar ratio for non-ozonized pristine was down to 0.07 whereas
the dry-ozonized biochar sample O/C molar ratio was about 0.19
(Kharel et al., 2019). Therefore, ozonization treatment has the po-
tential to change the molar ratio for oxygen and carbon in pristine
biochar materials. Marmiroli et al. suggested that SEM imaging and
EDX analysis can be used to monitor the oxygen to carbon (C/O)
ratios and achieve consistency over the results of C/O ratios
(Marmiroli et al., 2018a). That report furthermore reveals that the
bulk properties may be affected by the ozone treatment of biochar,
which implies that dry-ozonization treatment can also change the
total oxygen content, as was observed by using SEM-EDS analysis
(Ma et al., 2016). That study also suggested that SEM-EDX results
were highly consistent to measure carbon, oxygen, and C/O ratios
and, thus, should be used in further studies as an effective tool for
the characterization of biochar materials and products.

To investigate the premise that the ozonization process gener-
ally happens on the surface of the biochar materials, there is a need
to compare the changes in between bulk properties before and after
the ozonization with biochar with more high surface area and
biochar with less surface area (Kharel et al., 2019). Nanoscale par-
ticles on surfaces of biochar carbon materials get oxygenated; thus
surface oxygenation can be measurable even for both bulk biochar
(O/C) ratio analysis (Huff et al., 2018). Therefore, maybe the overall
functional groups of oxygen present onto the biochar surfaces can
be noteworthy enough to alter the overall percentage of oxygen
owing to its extremely more BET surface area; thus, the average
carbon content and thickness may vary among the porous spaces.

Qualitative assessment of the VM content of biochar, which is
also a useful and labile component to perform quality control
measures can describe proximate analysis and elemental results.
The dynamic molecular structure of biochar derived from plant
biomass corn stover samples showed high ash-content (58%) but
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comparatively low % of O about 5e8% and %C (ca. 33%), in com-
parison to wood biochar at identical temperature conditions
(Keiluweit et al., 2010). That report further reveals that biochar with
higher fixed carbon is characteristic for >600 �C, entailing the
possibility of forming thermally stable, and highly condensed bio-
char materials at higher temperature settings (Pastorova et al.,
1994). These reports, in addition to the work of Budai et al., sug-
gested that the atomic ratios for O/C (Ippolito et al., 2020) or H/C
(Xiao et al., 2016), and VM contents (Caillat and Vakkilainen, 2013),
are important signs to examine the degree of pyrolysis process but
are poor forecasters of the biochar applicability in agronomic fields
(Budai et al., 2014). Likewise, the lower O/C ratio and lower O%
content of biochar materials may suggest dehydration and
condensation reactions, respectively. This observation also cor-
roborates the FTIR results, where the O�H stretching vibration
band is located at region 3200�3600 cm�1, C]C, and C]O at
1600�1740 cm�1 bands which are more strong (Lee et al., 2010).
This report determines that the CEC valuesmay vary dependably on
the biochar sample types; it seems that the CEC values also
corroborate with the O/C ratios as the higher the CEC value the
higher the O/C ratio. It has been also established that there is an
intense relationship between the O/C ratio and CEC value of biochar
samples (Huff et al., 2018), which is owing to the innate negative
charge on the oxygen-based functional groups which are able to
create an electrostatically attractive force to collect cations (Huff
et al., 2014). Though a high O/C ratio is desired for better CEC
value when consuming biochar materials as a soil amendment
agent, it must also be agreed on when the higher O/C ratio, the
largely half-life for such biochar thought to be shorter (Santín et al.,
2017). Particularly biochar products with O/C ratios if higher than
that of 0.2 have an overall half-life �of 1000 years (Spokas, 2010). If
O/C ratios are higher (about �0.5 to 0.6), then the predictable half-
life drops sharply to< 100 years. Thus, precisely designed biochar
materials for use as both as carbon sequestration and soil amend-
ment agent will be needed to wisely increase the O/C ratio only on
the biochar surface, thus giving a greater CEC value, while such
settings even uphold the poly-aromaticity with preferably lesser O/
C ratio in the hardcore region of the biochar for long-term carbon
sequestration stability (Bakshi et al., 2020). The determined CEC
values correspond well with higher ratios of the oxygen to carbon
ratios (O/C) thus, higher O/C ratios directly correspond to the
presence of abundant carbonyl, hydroxyl, and carboxylate func-
tional groups present on the biochar surfaces (Lee et al., 2010).

5.2. Carbon

The analysis of chemical species of carbon both organic and
inorganic phase is an important factor in developing applications in
the carbon sequestration, agronomic field, and ecosystem sustain-
ability since the chemical species governs both reactivity and sta-
bility of the carbon in the biochar materials (Hernandez-Soriano
et al., 2016). Carbon is the most abundant and the most impor-
tant element, acting as the backbone of biomass and biochar ma-
terials. The carbon species present within biochar materials are
typically categorized in its inorganic phase as bicarbonate, and
carbonate in addition to its aromatic carbon, aliphatic carbon, and
surface functional groups of carbon in its organic phase (Faheem
et al., 2020). It is quite challenging to accurately distinguish these
carbon species and their phases. The inorganic form of carbon may
go through a transition to bicarbonate from hydrated carbonate
while the pyrolysis process progresses; carbonate, depending on
the phase, may be released into the environment as CO2 gas, and
also depending on its fate in the type of inorganic crystals present
in the biochar materials. The carbon in its organic phase transforms
their carbon fromhemicellulose/cellulose/lignin components of the



G.S. Ghodake, S.K. Shinde, A.A. Kadam et al. Journal of Cleaner Production 297 (2021) 126645
biomass, thus, turns into an aliphatic carbon within biochar at the
middle of pyrolysis temperature, and also forms an aromatic carbon
species at high temperatures during pyrolysis immediately after
complete dehydration, cracking reactions, and then aromatization
(Wang et al., 2014). Such transitions can be examined by FT-IR
(Chen et al., 2008), Raman spectroscopy (Chia et al., 2012), magic
angle spinning coupled with cross-polarization (Baccile et al.,
2014), solid 13- C NMR spectroscopy (Jindo et al., 2014), and also
by using some other characterization techniques. Furthermore,
recently developed techniques called solid-state high-resolution
two-dimensional 13-C NMR was also used to collect detailed in-
formation on about the status of both carbon species and chemical
states within biochar (Le Brech et al., 2015). Most of these charac-
terization techniques can differentiate between alkyl and atomic
carbons, but it is quite challenging to distinguish such functional-
ization present in the carbon atoms of biochar materials.

5.3. Nitrogen

Nitrogen is the main element that contributes to forming pep-
tide bonds present in the protein content of biomass. Generally,
biomass feedstocks e.g., wood and plants are reported as nitrogen-
poor biomass owing to their somewhat low content of proteins;
however, other biomass samples such as manure, chicken litter,
plant leaves, food waste, or grass contains rather higher protein
content thus are nitrogen-rich biomass materials (Ou et al., 2015).
For instance, wood, grass, and casein -derived biochar were re-
ported as containing ~0.3e1%, ~6e7%, and 12 to 15wt % of nitrogen,
respectively (Ou et al., 2015). Nitrogen fraction is an important
factor in estimating the recalcitrance of carbon materials (Knicker,
2010). Even though numerous researchers have considered
nitrogen-rich biochar in their studies: nitrogen functionalized
biochar (Bamdad et al., 2018), nitrogen-dopedmicroporous biochar
(Zhang et al., 2016), nitrogen-rich biomass-derived biochar (Zhang
et al., 2014), however, only a few studies have emphasized the
speciation of nitrogen inside the biochar (Liu et al., 2018).
Furthermore, Zhang et al. revealed that micro-porous structures
perform a vital role in influencing CO2 capture at the lower tem-
perature conditions, whereas physicochemical properties, partic-
ularly from the nitrogen-rich functional groups perform better to
CO2 capture at higher temperature conditions (Zhang et al., 2016).
The structures associated with nitrogen contain various groups
including pyridine, pyrrole, imine, amine, nitroso, acrylamide, and
nitro functional groups, as summarized in tabular form (Xiao et al.,
2018). Some of the reports specify that the total nitrogen content
present within biochar materials increases in the initial stage and
consequently decreases marginally as the pyrolysis temperature
increases (Cantrell et al., 2012). Knicker et al. further revealed
biochar materials having N species are mostly from amide-N, pyr-
idine-N, and pyrrole-N. The peptide-N bonds transform into the C
base of N-hetero-aromatic compounds during the progress of py-
rolysis; however, it was suggested that some of the amide-N groups
within biochar decrease with the increase of the pyrolysis tem-
perature (Knicker, 2010). Pietrzak et al. reported nitrogen-enriched
activated carbons preparation protocol using reactions with urea or
ammonia and suggested that the N can be introduced into biochar/
charcoal at temperature from 500 to 700 �C in the forms of pyrrolic-
N, pyridinic-N, imine-N, amide-N, amine-N etc. (Pietrzak et al.,
2006). Furthermore, Pietrzak et al. revealed products having
microporous structures having nitrogen-enriched (1.0e8.5wt%)
activated carbon samples with a fully-grown surface area ranging
from 1500 to 2500m2/g (Pietrzak et al., 2010). Several reports on
pyrrolic-N and pyridinic-N conducted to prepare N-doped carbon
arrays are appropriate for developing “electronic band structures”
performing as conductive sites during electrochemical applications
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(Tian et al., 2020). Another report also explained that the N-rich
biochar materials applicable to demonstrate a good heat resistance
but less stability over chemical-oxidation than that of N-poor bio-
char materials (Liu, W.-J. et al., 2019).

The fate of extractable nitrogen sources became a subject of
interesting research owing to their application to agronomic soils.
Various nitrogen species are extractable by applying various
extraction methods (Matsumoto and Ae, 2004), including from
amino sugars, ammonia, hydrolyzable nitrogen forms, and total
amino acids; it seemed their content levels to decrease as the in-
crease in pyrolysis temperatures (Krounbi et al., 2020). Funda-
mentally, there was found uncertainty over whether extractable
nitrogen source originates either from inorganic or organic matter
present within biochar (Dempster et al., 2012). Nitrito- and nitro-N
were also detected in rice husk-derived biochar, forestry sawdust
biomass, and aquatic biomass (Acorus calamus) hydrolyzed at
650 �C (Wang et al., 2017). Wang et al. comprehensively described
the influence of biochar properties on the various crop yield and
their growth (Wang, D. et al., 2020). It is important to note that the
intrinsic nitrogen content of biochar is typically low and, thus, can
be considered as a nitrogen fertilizer if not treated or co-composted
with nitrogen-rich fertilizers (Zafar-ul-Hye et al., 2020).

The biochar-amended compost or co-composted biochar was
reported to promote crop growth and also compared with pristine
biochar combined with both pristine biochar or mineral fertilizer
(Hagemann et al., 2017). However, it has been suggested that bio-
char with higher C/N ratios those have limited nitrogen availability
(Liao et al., 2020), addition of nutrient enriched biochar to soil is
increases microbial activity (Azeem et al., 2020) and crop yield
(Prommer et al., 2014). For instance, it was described that 5% of
biochar materials amended with mineral fertilizer with 0.0134% of
nitrogen source showed extraordinarily higher growth promotion
of oat crop than pristine biochar (Schulz and Glaser, 2012). Biochar
materials are suggested as potential candidates for improving ni-
trogen recycling in agronomic plant-soil systems (Liao et al., 2020).
The application of biocharmaterials to agronomic soils reduces N2O
emissions (Bruun et al., 2011), reduces nitrogen fertilizer leaching
(Liu, Q. et al., 2019), improves nitrogen fertilizer availability to the
soil, thus can help to raise crop productivity (Hussain et al., 2017),
and promotes the activity and diversity of soil microbes (Hardy
et al., 2019).

The soil nitrogen dynamics of biochar fertilizer (Clough et al.,
2013) and sustainable remediation practices in the soil environ-
ment are of substantial interest (Wan et al., 2020); including in
terms of influence on nitrogen fixation (Olszyk et al., 2020), nitro-
gen leaching (Xu et al., 2016), nitrification, denitrification, and
emission of greenhouse gas N2O (Liu et al., 2021). Several studies
indicated that biochar materials demonstrate higher bonding af-
finity during the adsorption of ammonium (NH4þ) (Fidel et al.,
2018), an acid-aged biochar reported for ammonium adsorption
(Wang, Z. et al., 2020), nitrogen removal through mechanism of
cation-exchange (Liang et al., 2016), sequential carbon dioxide and
ammonia adsorption (Krounbi et al., 2020), however, biochar
showed negligible efficiency for nitrate (Feng et al., 2020).
Ammonia fertilizer absorbed within biochar materials is recently
reported for their ready bioavailability (Taghizadeh-Toosi et al.,
2012); thus, modified biochar materials can be regarded as a
nutrient-bank or retention agent in achieving sustainable nitrogen
fertilizers into the agronomic soils (Ding et al., 2010; Spokas et al.,
2012). The application of biochar-amendment to the nurseries
substrates and for seed coating has been suggested to produce
healthy seedlings.

Another report also explored the physicochemical properties of
biochar-amendment, especially water availability and movement,
resulting in improved seedlings growth (Radin et al., 2018).
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Mulabagal et al. categorically stated that biochar acts as a “soil
conditioner” owing to improved tilth the physical condition, water
holding capacity, and nutrient holding capacity of the soil
(Mulabagal et al., 2014). Furthermore, biochar involves stabilizing
both the greenhouse gases, nitrogen, and carbon, thus decreasing
the environmental emissions of N2O and CO2 reported for soil
amended with anaerobic digesters (Martin et al., 2015). Biochar
samples were also described for their critical role in microbial-
based nitrogen fixation by leguminous crop Phaseolus vulgaris by
increasing from 50% without biochar to approximately up to 72%
when biochar added 90 g kg�1 (Rondon et al., 2007) and, another
study on acidic soil planted with Rapeseed crop Brassica napus
revealed that biochar also implicates in stimulating in both the
denitrification and nitrification process by the effect of decreasing
emissions of N2O (Xu, H.-J. et al., 2014).

The N2O emissions reduction efficiency reported for biochar
derived from giant reed (Arundo donax) at increasing pyrolysis
temperature as an additive to the soil, temperature conditions
comprising 200, 300, 350, 400, 500, and 600 �C (Wang, Z. et al.,
2013). Cayuela et al. gave a detailed account of the potential of
biochar for reducing N2O emissions. They proposed the functioning
of biochar materials as an “electron shuttle” owing to the facilita-
tion of electron transfers in the microbial denitrifying process in
addition to its “liming effect”, which can encourage the decrease in
the conversion of N2O into N2 gas, likely achieving from 10 to 90%
reduction in N2O emissions liable to the type of agricultural soil
(Cayuela et al., 2013). The nitrogen and carbon cycles get influenced
by three different ways for biochar. First, carbon layers develop
more recalcitrant during biochar processing in correspondence
nitrogen turns into less available, owing to improved stability of the
biochar products (Soong and Cotrufo, 2015). The second route is the
adsorption of NH4

þ within the carbon layers of biochar also pro-
motes the retention of nitrogen fertilizer in the soil. Third, plant and
microbial growth in soils amended with biochar get limitation due
to lower nitrogen content, and fewer microbial activities together
may also reduce and stabilize mineralization of fixed carbonwithin
the soil (Prayogo et al., 2014).

5.4. Phosphorus

Phosphorus is an essential and key plant nutrient for good
growth and higher yield of crops, whereas phosphorus require-
ment in plants naturally is lower than that of potassium, calcium,
and nitrogen. Unlike oxygen, hydrogen, carbon, and nitrogen
element, which may lose depending on the pyrolysis temperature,
but, the phosphorus not does vaporize into an environment below
temperature 700 �C (Atkinson et al., 2010), allows filling phos-
phorus content under the typical pyrolysis process. Ngo et al.
described prodigious domination by inorganic phosphorus content
as compared to the organic phosphorus specifically for biochar-
derived from bamboo biomass at pyrolysis temperature
500e600 �C (Ngo et al., 2013). Considering these facts, Uchimiya
and Hiradate (Cantrell et al., 2012), studied the transformation of
phosphorus species during pyrolysis and it was revealed that the
phosphorus in most of the biomass is generally in an organic form
such as phosphate di-esters and monophosphate. In another study
applied 31-P NMR, suggested that the phytate groups get trans-
formed into an inorganic phase of phosphorus particularly within
manure biomass and also from some plant-derived biochar at py-
rolysis temperature 350 �C (Uchimiya and Hiradate, 2014). The
pyrophosphate (P2O7

4�) in plant origin biomass materials were
found to be persistent in biochar prepared at temperatures 650 �C
owing to the inorganic form of phosphorus, and the orthophos-
phate (PO43�) turns into sole phosphorus -species within biochar
derived from manure biomass materials during pyrolysis at a
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temperature higher than 500 �C (Uchimiya and Hiradate, 2014).
Solid-state 31-P NMR, XRD, and XANES techniques are also can

be used to characterize phosphorus phases lingering onto the solid
phase biochar after consecutive extraction process (Hunger et al.,
2008). For instance, poultry chicken litter mainly contains inor-
ganic phosphorus in the alkali extraction method by NaOH and
organic phosphorus in the solid phase extraction (Seiter et al.,
2008). Their report further reveals that the alum-modified
poultry chicken litter was rich in organic phosphorus in an
aqueous phase, and in the solid phase was in form of calcium
phosphate. The phosphorus geochemical cycle is unidirectional; it
starts from land reach to sea owing to there is no emission of above-
described species of phosphorus, and it is almost not possible to
transport phosphorus species from the ocean back to the soil
ecology except through a slow process of movement of diminution
at crustal plate environment (Elser and Bennett, 2011). Estimation
of a main soil nutrient phosphorus for their fluxes, such as the
dispersal of phosphorus fertilizer from agricultural soil, ranges
from three to fivefold, and some other factors, such as the global
return of phosphorus fertilizers from harvested produce, are un-
clear (Pinitpaitoon et al., 2011).

The solutions to save more phosphorus lie in recycling and
recapturing from food waste, human waste, and some other
phosphorus-rich residues as well transferring from rich sources to
where there is a need and also developing ways to utilize it more
effectively (Smol, 2019). Some strategies are simple and readily
accessible, even poor farmers from developing countries can
involve in implementation. Therefore, making slow-releasing bio-
char based phosphorus-additive was suggested to sustain more
phosphorus fertilizers in soil settings (Yao et al., 2013). The influ-
ence of the cations, anions, and pH on the release of phosphorus
fertilizer from soil have to be further investigated (Silber et al.,
2010). That study also reported that the high pH values signifi-
cantly hinder the loss of phosphorus, however, some of the anions
can enhance the release of the orthophosphate (PO4

3�) owing to
opposite ion-exchange reactions, and in other case competing for
cations also involves decreasing the release of phosphorus, if there
is the formation of precipitated materials (Qian et al., 2013). In
short, phosphorus present in biomass can be transformed from
their intrinsic organic phase of phosphorus to inorganic phase
phosphorus by carbonization/pyrolysis process and thus aid as
inorganic nutrient bank for the soil fertility as well as acting as
adsorbent for metal ions. Similar to the phosphorus element, sili-
con element is also a key inorganic nutrient for certain crop plants,
rice fields and enhance microbial growth.

5.5. Silicon

Though not all types of biomass samples or organic residual
wastes are useful for pyrolysis into biochar consist of silicon (Gan
et al., 2021); phytolith-rich biomass includes rice husk (Shen,
2017), rice straw (Marxen et al., 2016), and corn straw (Yang, X.
et al., 2020), and those are essential crops for food production
and also key biomass feedstocks can be used for large-scale biochar
production (Xiao et al., 2014). Certainly, silicon nutrient is essential
in silicophilic crop plants (such as barley, rice, maize, and wheat)
(DalCorso et al., 2014) and is also involved in plant protection to
these crops from insects, diseases, metals, excess sunlight, and
drought conditions (Zargar et al., 2019). It involves several factors in
influencing soil availability of silicon to crop plants, including
choice of materials, soil type, organic matter, soil pH, temperature,
and soil texture (Miles et al., 2014). Moreover, previous studies
suggested that the biochar-amended silicon and microbes together
can contribute to the adsorption and protection of crop plants from
toxic metals cadmium (Roh et al., 2015), aluminum (Qian and Chen,
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2014), lead (Han et al., 2017), and some others in aqueous media
(Harindintwali et al., 2020). It revealed the release of silicon nu-
trients from biochar materials in the form of monosilicic acid in
aqueous media as effective in performing biochar mediated
adsorption of several heavy metals (Chen et al., 2015).

Xiao et al. examined silicon transformation in biochar derived
from rice straw at different pyrolysis temperature conditions (Xiao
et al., 2014). In another report, it was reported that silicon in
biomass existed mostly as a phytoliths in its form of polymeric
silicon andwater-soluble silicic acid, whichwas revealed as for easy
availability to roots (Ma and Takahashi, 2002). This report further
describes that the silicon turns to dehydrate and is polymerized
during pyrolysis; however, the polymeric silicon is partly crystal-
lized after further pyrolysis process. Rice straw derived biochar at
high-temperature pyrolysis showed higher silicon dissolution
property than that of biochar prepared at low pyrolysis tempera-
ture conditions (Southavong et al., 2018). Furthermore, silicon-rich
biochar materials showed much higher tendencies of silicon
dissolution than that of ash or soil sources, which consist of higher
levels of silicon content in silicate form (Wang et al., 2001). Most of
the arable soil types globally are suffering from the depletion of
silicon (Haynes, 2014); thus, silicon-rich biochar materials with
better dissolution capacities for silicon can provide alternative
silicon-fertilizer for slow-release in soil (Li and Delvaux, 2019).

The inorganic phase of silicon represents a major fraction pre-
sent in silicon-rich biochar (about~35e38% of the dry mass content
in ash derived from rice straw) and it can be separated from organic
matter that presents within biochar (Xiao et al., 2014). In accor-
dance with the results of SEM-EDS, this report further reveals a
mutual relationship exists between silicon and carbon during the
increasing pyrolysis temperatures. In particular, the silicon gets
protection from dissolution owing to the carbon layer under the
pyrolysis process; then, carbon gets protection from the silicon
layer thus can avoid carbon loss under the high pyrolysis process
(Xiao et al., 2014). Another comprehensive report on the recalci-
trance of biochar, molecular mechanisms, and the role of silicon
and carbon components indicated that the silicon can directly back
stability and recalcitrance of biochar materials (Guo and Chen,
2014). That report further illustrated coupling cycles for silicon
and carbon present within biochar and in the topsoil ecosystem.

The silicon-rich biomassmaterials have the ability to respire CO2
from the air and soluble silicic acid through the roots system in the
soil. A wide range from 0.1% to 10% of silicon distribution in the dry
weight of biomass normally allows for silicon to get accumulated in
biochar materials during pyrolysis processes (Rizwan et al., 2018).
The plant-derived silica is abundant and useful to prepare silica
nanoparticles and their composites (Prabha et al., 2020), hot-water-
treatment allows to separate silica from rice husk residues
(Mochidzuki et al., 2001), ash morphology of the silicon can be
transformed from amorphous to crystalline silica nanoparticles by
increasing pyrolysis temperature (Zhang et al., 2012) and there is
possibility of causing a strong interactions between carbon and
silicon (Wu, J. et al., 2019). However, the interlaced carbon-silicon
content begins to become discrete at increased pyrolysis temper-
ature and forms composite crystals that are stable for a long period
(Dutta et al., 2014). Such a kind of carbon-silicon coupling dem-
onstrates the key role of biochar materials in the geochemical cycle
of silicon an essential inorganic nutrient (Wang, Yoo et al., 2018).
The silicate and carbon minerals cause emission of CO2 owing to its
slow release over several years, thus silicic acid becomes accessible
to roots of crop plants, makes possible in completing silicon and
carbons geochemical cycle (Hughes et al., 2020). Wang, Y. et al.
reported a comprehensive study on the structural features of silica-
containing biochar and its application in pollution remediation and
soil improvement (Wang et al., 2019b). Some of the recent reports
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also indicated that there is a need for more research activities with
the direction of revealing the significance of biochar materials
better in global silicon and carbon balance (Wang et al., 2019b), and
also their essential agronomic functions of silicon in biochar ma-
terials (Li and Delvaux, 2019) and potential applications in ferro-
silicon production (Riva et al., 2019).

5.6. Inorganic phase

Biochar materials are a combination of interlaced organic-
inorganic structure mainly contributed by carbon matrices and
other minerals that exist in biomass. This diverse range of inorganic
phases interacts within structures and impacts the organic phases
(Farbod et al., 2013), and involves in tuning their properties and
applications (Chac�on et al., 2017), thus, understanding trans-
formations of mineral phases during the pyrolysis process are of
great significance (Xu and Bhattacharya, 2019). Xiao et al. (2018)
illustrated plausible transformation in inorganic phases of several
types of mineral components produce involving several chemical
reactions occurs within the inorganic phase throughout the py-
rolysis process include drying up, polymerization, decarboxylation,
dechlorination, crystallization, and also reduction-like reactions.
For instance, silicic acid available within the silicon-rich biomass
like rice-, corn- and wheat-straw polymerizes and forms silicon
polymer materials and crystallize phase silicon turns further into
the quartz phase during increasing pyrolysis temperature (Xiao
et al., 2014). That report further revealed that the inorganic phase
initiates from chloridized, carbonated, or hydroxylated metals and
then transforms into metallic oxides under limited oxygen condi-
tion, some of the elements are reduced into pure metals owing to
the strong reducing atmosphere during increasing pyrolysis tem-
perature. Researchers are now readily producing zero-valent Fe
(Peng et al., 2017), magnetic biochar (Chen et al., 2011), porous
biochar zinc nanocomposites (Gan et al., 2015), and zero-valent Cu
covered biochar materials (Liu et al., 2012) by using these trans-
formation reactions during the pyrolysis process.

However, in addition to biochar being rich in organic carbon, it
also contains a reasonable share of inorganic elements such as
alkali-earth metals (Mg, Ca) and other alkali metals (Na, K). An
important agent involved in the production of several chemical
products called calcium carbide (CaC2) can be produced by inte-
grating fine biochar materials with CaO precursors under higher
pyrolysis temperature (Li et al., 2010). The structural functions and
various applications of inorganic content present within biochar
materials comprise but not restricted to the subsequent: magnetic
biochar materials for environmental remediation (Yi et al., 2020);
pore-forming agents (Azargohar and Dalai, 2008), remediation of
organic pollutants (Yan et al., 2015) and performing oxide
materials-involved catalytic reactions (Cheah et al., 2013; Lahijani
et al., 2013) and serving for carbon sequestration purpose (Li, F.
et al., 2014), providing slow-release nutrient fertilizers (Tsai et al.,
2012), heavy-metal co-precipitator agents (Xu et al., 2013), and
heavy-metal stabilizing agents (Debela et al., 2012). Magnetism
originates from the capping of g-Fe2O3 (Yang, J. et al., 2016), and the
catalytic activity emanates from the active sites of zero-valent iron
(Oh et al., 2017), or some other transition metals (Lyu et al., 2020).
Moreover, pore-creating agents include ZnCl2 (Xia et al., 2016), KOH
(Azargohar and Dalai, 2008), and some others (Angın et al., 2013).
The influence on carbon fixation greatly depends on the types of
mineral loaded within biochar materials, for instance, in laboratory
scale 5-year experiment showed variation from 0.5% to 9% of car-
bon mineralization within biochar, and biochar derived from
manure biomass mineralize faster than that of biochar derived
plant biomass (Singh et al., 2012). In another experiment, it was
reported that the co-pyrolysis with kaolin, calcite (CaCO3), or
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dihydrogen phosphate of calcium (Ca(H2PO4)2) reduces in broad
range from 0.3% to 38% loss of carbon from biocharmaterials during
the test using oxidation by potassium dichromate (Li, F. et al., 2014).
This report further reveals that the results indicated that out of
these three types minerals, particularly Ca(H2PO4)2, was much
functioning to improve retention of carbon, thus promoting the
stability of biochar, that can be expected to result in an excellent
mineral additive to produce the precisely designed biochar mate-
rials with great capacity over carbon sequestration and long-term
stability.

In conclusion, various inorganic elemental species are in the
biomass samples or used in pretreatments can transform to an
inorganic phase of biochar using appropriate pyrolysis temperature
and recycle for multifunctional applications in various fields. It can
be also achieved by transforming difficult to dissolve inorganic
species into their easy to dissolve metal species, in addition to this
the heavy metal content can be stabilized within biochar materials
(Debela et al., 2012). However, deep understandings are required
about the carbon stability, solubility behavior, nano-effects, po-
tential catalytic activity, and toxicity that would emanate from the
inorganic nanocomposites of biochar (Ramanayaka et al., 2020).
Reports on the biochar materials inorganic phases are compara-
tively easier to explain than that of the organic phase of biochar
owing to the greater atomic sensitivity while characterization of
metal atoms using various independent instrumentations. To date,
there are several other metallic elements, species, in singular and
composite crystals are yet remain unknown and thus need addi-
tional research efforts. Reports published on the structure and
behavior of nano-biochar are insufficient to achieve clarity, despite
the growing interest. Thus, further research efforts should be
focused on exploring new techniques to increase the yield of nano-
biochar while reducing aggregation, upscale production to use as
an electrodematerial for supercapacitor production (Li, Panyu et al.,
2020) and understand biocompatibility aspects for soil bacteria's
(Kappler et al., 2014), plants (Ramadan et al., 2020), domestic ani-
mals (Schmidt et al., 2019), and humans (Dong et al., 2019). Future
studies should focus on the inorganic matter within biochar ma-
terials, particularly on the components are of agronomic interest
includes silicon, cobalt, copper, zinc, magnesium, calcium, boron,
and many other for their role in altering morphology during bio-
char formation and their availability to the soil root zone.

6. Conclusions and implications

An extensive research expected on the biochar production,
owing to biomass availability, portability of pyrolysis reactors, ad-
vances in characterization techniques, low-cost biomass materials,
and their potential applications. The possibility of producing bio-
char materials from multiple biomass resources, their multilevel
structural features, and inorganic phases besides their diverse
range of functionalities have potential to transformmany prospects
in sectors as well as renewable energy, agronomic applications, and
environmental protection. In this report, we summarized
numerous aspects of biomass feedstock choice, the effect of py-
rolysis temperature, relationships of biomass components, dy-
namic structural features of biochar, and their potential agronomic
applications. It presents the multilevel analysis of biochar materials
besides the molecular structure of biochar, organic phase with a
diverse range of molecular compounds, surface functionalities, and
lastly, bulk elements and inorganic phase. So far diverse range of
potential applications have been established using biochar mate-
rials includes electrochemical devices, remediation of soil and
water, soil amendment, carbon sequestration, and novel biochar-
based products as renewable additives as topsoil nutrient bank
including sorbents, fertilizers, and bio-augmentation agents for
25
improving microbial habitat. About biochar structural features,
there is need of deep understanding to anticipate bioavailability,
surface functions, concentration, organic molecules, mobility, sur-
face radicals, toxicity, and environmental fates. Moreover, the
recent advancements in standard analytical and characterization
methods are advantageous for several reasons, comprising but not
restricted to the following features: identification and quantifica-
tion of different phases, species, surface functionalities, and organic
phase by identifying molecules of a diverse range having molecular
different weights, applying standard methods for extraction pro-
tocols, comparison methods, and post-harvest biochar treatments.

For applications, there is also need of more profound under-
standing of applicationestructure relationships, thus, we could
design and select desired biochar-based materials for particular
application. As described, the relationship between the application
and structure of biochar material is now gradually developing from
semi-quantitative to quantitative measurements and finally un-
derstanding their qualitative relationship mechanisms. Though few
of such relationship mechanisms have been formerly discovered,
many R&D activities are yet to be devoted to the
applicationestructure relationships are involved, particularly for
understanding molecular structural relationships. In this review,
based on the current understandings of molecular structures of
biochar materials, we suggest further studies on biochar materials
and that should be combined at microscopic and the macroscopic
levels while clarifying characteristic features of both cause and
effects. For instance, while looking at the fate of biochar materials
in soil settings, data should report the dissolution and release ki-
netics of all possible elements including core element carbon, and
the influence on the nano-biochar, the soluble extractable mole-
cules of organic biochar phase, and the skeletal inorganic phase of
biochar structures. Prior to considering biocompatibility, most as-
pects related to heavy metals, free radicals, extractable organic
species, and the main skeletal inorganic of biochar materials need
to be investigated in an organized and comprehensive manner. We
should place more emphasis on elucidating the relationship be-
tween molecular structures of biochar materials with their appro-
priate applications owing to the fundamental understandings of
biomass components and their pyrolysis mechanisms. We need
precise quantification and predictions concerning various types of
biochar materials with their structure-specific applications with
extensive reports. Finally, this report anticipates intelligent design
systems and future directions are essential for producing desired
biochar materials in achieving all possible benefits for agronomic
and environmental sectors.
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